Angewandte Chemie International Edition Methodologies

Similar documents
Additions to Metal-Alkene and -Alkyne Complexes

Electrophilic Carbenes

Chapter 5 Three and Four-Membered Ring Systems

CEM 852 Final Exam. May 6, 2010

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H

Syntheses of Leucascandrolide A. Supergroup Meeting August 4 th, 2004 Yu Yuan

A Concise Synthesis of ( )- Aplyviolene Facilitated by a Stragetegic Ter<ary Radical Conjugate Addi<on

Asymmetric Catalysis by Lewis Acids and Amines

Total Syntheses of Nominine

Total Synthesis of Oxazolomycin A

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Comparative Synthesis of Ingenol. Tyler W. Wilson SED Group Meeting

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Synthesis of the Stenine Ring System from Pyrrole

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

A Review of Total Synthesis of Spirotryprostatin A and B. Jinglong Chen Supergroup meeting Princeton University June

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date :

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Enan$oselec$ve Total Synthesis of Amphidinolide F

Chiral Bronsted Acids as Catalysts

JOC Year-in-Review, 1984

Scandium-Catalyzed Asymmetric Reactions

Organocopper Reagents

Three Type Of Carbene Complexes

Chiral Brønsted Acid Catalysis

Towards Maoecrystal V: A Comparison of Recent Strategies

Total Synthesis of ( )-Virginiamycin M2

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Strained Molecules in Organic Synthesis

SECTION 12. «POT-POURRI» in Organic Synthesis (2018)

"-Amino Acids: Function and Synthesis

Denmark Group Meeting. & Electrophilic rearrangement of amides

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Dr. P. Wipf Page 1 of 5 10/7/2009. Cl Ru. Kingsbury, J. S.; Harrity, J. P. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.

Enantioselective Total Synthesis of (-)-Acetylaranotin, a Dihydrooxepine Epidithiodiketopiperazine

Carbonyl Ylide Cycloadditions

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

CEM 852 Exam LDA, THF, 0 C, 15 min; then

Mechanism Problem. 1. NaH allyl bromide, THF N H

Total Synthesis of the Chartellines

JOC: 1985 Year in Review

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

Suggested solutions for Chapter 34

Synthesis of Amphidinolide X and an Exploration of Key Reactions

A Stereoselective Synthesis of (+)-Gonyautoxin 3

Massachusetts Institute of Technology Organic Chemistry 5.512

Total Syntheses of Minfiensine

Protecting Groups in Organic Synthesis-1 Ready

Stereoselective reactions of enolates

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Total synthesis of Spongistatin

Total Synthesis of (+)-Sieboldine A J. Am. Chem. Soc. 2010, 132,

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Studies toward the Synthesis of Azadirachtin: Total Synthesis of a Fully Functionalized ABC Framework and Coupling with a Norbornene Domain

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Highlights of Schmidt Reaction in the Last Ten Years

BCSJ 5 Years Review:

Organic Electron Donors

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Shi Asymmetric Epoxidation

Prof. Ang Li. Literature Seminar Kosuke Minagawa (D2)

Synthesis of Substituted 1,4-Dienes by Direct Alkylation of Allylic Alcohols Kolundzic, F.; Micalizio, G. C. J. Am. Chem. Soc. 2007, 129,

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Synthesis of Azadirachtin: A Long but Successful Journey

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Stereoselective reactions of enolates: auxiliaries

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

CEM 852 Exam-2 April 11, 2015

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

CEM 852 Final Exam. May 5, 2011

ROC Exam Problem 1

Midterm Exam #1 /280 CHEM 6352 Fall 2011

Enantioselective Synthesis of (+)-Cephalostatin 1

Introduction to Synthesis: Design (CHE686) Spring 2015 Exam #1 3/6/15

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Chapter 6 Cycloadditions and Rearrangements 1. Diels-Alder Reactions 2. [2 + 2] Cycloadditions 3. 1,3-Dipolar Additions 4. Cheletropic Reactions 5.

Recent Total Syntheses! Published in Nature!

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Problem Session(5) Please provide each reaction mechanisms and explain the stereoselectivities.

Tips for taking exams in 852

Palladium-Catalyzed Asymmetric Benzylic Alkylation Reactions

Given that conditions for pyrazine formation have been established in prior

Total Synthesis of Gracilioether F: Development and Application of Lewis Acid Promoted Ketene-Alkene [2+2] Cycloadditions and Late Stage C-H Oxidation

Strategies for Stereocontrolled Synthesis

Total Synthesis of Cyclosporine: Access to N-Methylated Peptides via Isonitrile Coupling Reactions

Total Synthesis towards Maoecrystal V

eatles Oasis - 199

Transcription:

Angewandte Chemie International Edition thodologies 2010-2016 Maximilian äfner Konstanz, 12.07.2017

ACIE 2010-2016 Cyclobutanes and -butenes Cross-Couplings eptacycles ing contractions or expansions Various methods 97014 pages published More than 1000 methods Azomethin- Ylides Allylic manipulations C - oxidation otochemistry 2 12.07.2017

Synthesis of heptacycles Gold-catalysis 1 1 = Ac > Piv > Bz [( t Buos)AuTf 2] (1 mol%) 1 1 2-15 examples, up to quant. yield - high diastereoselectivity PAu ipr ipr Tf 2 3 ipr G [Au] G G [Au] G 11 12 13 14 Ac 4 81 % d.r. 1.4 : 1 Ac = C 2 42 % = C= 63 % Ac 5 6 = 99 % = C 2 Bn 61 % = C 2 92 % 1 4 Au-cat./AgTf 2 (5 mol%) DCM, 28 C 4 2 1 15 16 17 23 examples up to 83 % yield retention of stereochemistry 1-4 = (substituted) aryl, (cyclo) alkyl = alkyl,, Bn = Ms, Ts Ac 1 [( t Buos)AuTf 2] (1 mol%) Ac DCM, 0 C to 40 C 7 1 2 8 [( t Buos)AuTf 2] (1 mol%) DCM, 0 C to 40 C 9 10 only acceptable yields if 1 / = alkyl not for = or cyclo-alkyl 1,2 - - shift = 57 % = 42 % Gagosz and Cao, Angew. Chem. Int. Ed. 2013, 9014 9018. ipr ipr ipr Au Cl ipr 18 Ms Ms 19 20 63 %, no loss of ee 62 % Liu et al., Angew. Chem. Int. Ed. 2012, 8722 8726. 3 12.07.2017

Synthesis of heptacycles via Diazo-intermediates 1 C 2 1 [h2(s-btcpc) C 2 2 4] TBS (1 mol%) 2 pentane r.t. or TBS TIPS TIPS hexanes, rflx 21 22 23 TIPS C 2 C 2 TBS TBS TIPS TIPS 24 25 26 C 2 TBS Ts [h2(adc)4] Ts (1 mol%) h CCl, 60 C h 35 36 37 4 TIPS TIPS 1 1 C C 2 2 conditions 2 TBS TBS TIPS 2 27 28 29 C 2 C 2 DIBAL, DCM TBS TBS 21 % TIPS 85 % eetips 30 31 32 Br - 9 examples, up to 92 %yield - diastereoselective reaction - gram scale Ts Ts 2 =, Ts, (2C) 2C, 2 C =,, p- 2 -, p-- [h2l 4] Ts [3,3] 38 39 40 41 Sarpong et al., Angew. Chem. Int. Ed. 2014, 9904 9908. Ts 10 examples up to 80 % yield d.r. > 20:1 86 to 99 % ee 34 h h 4 Davies et al., Angew. Chem. Int. Ed. 2014, 13083-13087. 4 12.07.2017

Synthesis of heptacycles other methodologies 1 C C C (1 atm) 24 examples, up to 92 %yield 5 mol% Pd(Ac)2 20 mol% DMS 1.5 eq BQ DCE, rt, 6h 42 43 1 / = Alkyl = Alkyl, yl, Alkynyl, Allyl 1 C 2 Bäckvall et al., Angew. Chem. Int. Ed. 2016, 14406 14408. [4 3] - 53 54 55 TiCl 4, DCM, S - 78 to -10 C S 56 ' 57 2 h 58 S = 2- or Benzo 2 eq ' /' =, Et,, 2 6 examples, > 70% yield D Bn 1 TIPS [e(c)5i] (2.5 mol%) MS 4A 1,4-Dioxan 100 C, 4h 44 45 4 46 22 examples, up to 93 % yield average yield ~ 80 % Bn [e] TIPS 1 1 / =, Alkyl, Cycloalkyl / 4 = Alkyl, yl, etyl [e] Bn [1,5-] C 47 [e] D 48 49 D TIPS TIPS D - C [e] D 50 51 D 52 4 TIPS Iwasawa and Sogo, Angew. Chem. Int. Ed. 2016, 10057 10060. 82 % 4:1 59 72 % 10:1 60 96 % 61 97 % 62 TiCl S 4, DCM, - 78 to - 10 C S dienes 63 ' 2 h S = 2- or ' 4 64 2 or 3 eq /' = 2, 2, 7 examples, 25 to 85% yield 60 % 65 57 % 66 69 % 67 Winne et al., Angew. Chem. Int. Ed. 2011, 11990 11993. 5 12.07.2017

ing contraction Synthesis of ᵞ-quat. Acyclcyclopentenes 1) C Allyl C 2 Allyl (S)--P (6.25 mol%) LDA, TF, -78 C [Pd2(pmdba)3] (2.5 mol%) 2) base, electrophile, 30 C 68 61 to 88 % yield 69 70 = alkyl, allyl, propargyl, benzyl yields 89 to 99 % ee 80 to 92 % P 2 71 hard electrophilic site quaternary stereocenter 80 nucleophilic site soft electrophilic site 1 reduction conditions 1 reduction conditions - LA, Et 2, 0 C then 10% Cl - DIBAL,, -78 C then oxalic acid, - CeCl 3 * 7 2, ab 4,, 0 C, then 10% Cl Li, TFA, TF, 60 C 72 73 74 1 1 = alkyl, allyl, propargyl, benzyl, etbenzyl = allyl, crotyl, cyclohexenyl overall yields o2s 80 to 95 % functional group handle variable group many possible further manipulations 1 1 1 2 1 2-2 75 76 77 78 79 1 Stoltz et al., Angew. Chem. Int. Ed. 2011, 2756 2760. 6 12.07.2017

ing expansion Cyclohexyne Cycloinsertion BF 4 I KCEt 3, TF -78 C to rt then p 7 buffer 81 82 83 84 85 86 87 Ac KCEt 3, TF -78 C to rt 74 % 94 95 steps 96 97 Guanacastepenes and [Fe2(C)9],, 90 C then DBU 51 % Carreira and Gampe., Angew. Chem. Int. Ed., 2011, 2962 2965. SEM SEM SEM K, I-comp, 2, K, [18]crown-6, -78 C to rt TF, rt TMS 1 1 only if 1 = 88 89 90 1 K K K SEM K, I-comp, SEM 2, KMDS, [18]crown -6, TMS -78 C to rt TF, rt 83 % SEM 76 % brsm 91 92 93 98 99 100 101 Carreira et al., Angew. Chem. Int. Ed., 2010, 4092 2095. 7 12.07.2017

4-membered ings (asymm.) allylic alkylation 2) 1, K 2 C 3, acetone p-absa, Et 3, C, rt, 12 h 86 % 1 2 1 [Pd2(dmba)3] (5 mol%) (S) - L 2 (12.5 mol%), 20 C F 1) µwave,, 180 C, 1 h 102 103 104 105 P 2 L 2 1 106 107 C hν, Et 2 1) C 2 a, Pd(P3)4, TF 1 1 C 2 quant. 2) SCl 2, C 2 112 113 114 = alkyl, Bn 1 =, alkyl, allyl, propargyl, Bn, (C2)C2 Et = alkyl ester or diphenylamide [Pd(P3)4] (5 mol%) Et 3, TF, 0 C 113 115 116 = alkyl, Bn, allyl =, p--c 6 4, (3,5)-CF3 -C 6 3, p- 2 -C 6 4 12 examples up to 92 % yield C 2 10 examples up to 68 % yield d.r. > 90:10 dialkyl γ lactones 109 15 examples, 62 to 98 % yield, 86-99 % ee Bn 2 2, 1 M a,, 23 C 80 % 1) TMSC 2, BF 3 *Et 2, Et 2 2) Cl (aq), DCM 69 % o2s 1 = Alkyl, (et)benzyl, Allyl, Propargyl = Vinyl,, Cl,, Alkyl, yl Grubbs-oveyda II, 1 97 % 108 TMS 110 α 111 -quaternary F cyclopentanones 1) 2 *Cl, pyr, Et 2) ptscl, Et 3, DMAP, DCM 22 % o2s 112 Bn quaternary spirocycles dialkyl γ lactams C2 Et C2 Et cat. s C2 4, Et M,, C 2 Et PIDA, DIPEA,, C C MTBE, Et, 0 C to rt 2 Et 2 Et 2 = = 2 C 2 73 % 56 % Et 118 117 119 C 2 Grubbs II (20 mol%) C2 ethylene (1 atm), DCM, rt 50 % 120 121 2 C C 2 1) IS, C/ 2 2) TFA, DCM 34 % C 2 I C 2 122 123 C 2 Stoltz et al., Angew. Chem. Int. Ed. 2013, 6718 6721. Maulide et al., Angew. Chem. Int. Ed. 2010, 5672 5676. 8 12.07.2017

4-membered ings asymm. allylic alkylation [{Pd(allyl)Cl}2] (2.5 mol%) C 2 1 L1a (7.5 mol%) C 2 1 1 1 TF, 0 C, 1h C 2 124 125 127 1 =, Et = Alkyl, Allyl, Propargyl, (C2)3 Bn, (C2)3 Cl, (C2)2C 9 examples up to 85 % yield d.r. > 95:5 ee 90 to 96 % P L 1a = [{Pd(allyl)Cl}2] (2.5 mol%) C 2 L1b (7.5 mol%) TF, 0 C, Et 3, 6 h 124 128 129 = p- 2 -C 6 4 = alkyl, allyl, benzyl, benzyl, p-brbn (C)2 Bn 7 examples up to 76 % yield d.r. > 91:9 ee 94 to 98 % 2 C [{Pd(allyl)Cl}2] (2.5 mol%) 2 1 1 1 C2 L2a (7.5 mol%) 1 TF, 40, 1h 124 125 130 C 2 1 =, Et = alkyl, allyl, (C)2 C 2 Et, (C2)3 Bn, Bn, p- 2 -Bn 10 examples up to 82 % yield d.r. > 95:5 ee 92 to 99 % P P 2 L 2a L 1b nbu C2 Et nbu C 2 Et C 2 Et C 2 Et 134 135 C 2-96 % ee nbu C2 Et C 2 Et C 2 137 96 % ee L1a ent-l1a 124 L2a ent-l2a C 2-98 % ee nbu C 2 Et C 2 Et C 2 98 % ee 136 Et 2 C Et 2 C 2 C 131 C 2 C 2 C 2 132 133 55 % 63 % 50 % d.r. 80:20 d.r. 71:29 d.r. 55:45 ee 87 % ee 91 % ee 83 % Maulide et al., Angew. Chem. Int. Ed. 2011, 12631 12653. 9 12.07.2017

4-membered ings asymm. allylic alkylation h ν not stable compound 138 139 C 2 C 2 2 M Cl, Et 2 bench-stable compounds Cl Cl rac - cis rac - trans 139 140 141 C 2 Cl rac - cis C 2 Cl rac - trans C 2 1 C 2 2 1 140 142 C 2 1 C 2 1 141 142 [{Pd(allyl)Cl}2] (2.5 mol%) L1a (7.5 mol%) C, 0 C [{Pd(allyl)Cl}2] (2.5 mol%) L2 (15 mol%) TF, 40 C [{Pd(allyl)Cl}2] (2.5 mol%) L1a (7.5 mol%) C, 0 C [{Pd(allyl)Cl}2] (5 mol%) L2 (30 mol%) TF, 30 C 1 2 C 1 2 C 1 2 C 1 2 C C 2 C 2 1 C 2 C 2 1 C 2 C 2 1 C 2 143 144 145 146 C 2 1 P 2 P L 1a L 2 15 examples up to 76 % yield d.r. > 95:5 ee 81 to 96 % enantiomeric approach: 8 examples up to 95 % yield d.r. > 90:10 ee 65 to 96 % 10 12.07.2017 Maulide et al., Angew. Chem. Int. Ed. 2012, 7314 7317.

otochemical methods n m 93 %; 75 % ee hν (300 nm) LA (50 mol%), -70 C 20 mm in DCM then Et 3, r.t. 147 148 86 %; 82 % ee Br 3 Al F B Bach and Brimioulle, Angew. Chem. Int. Ed. 2014, 12921 12924. 93 %; 94 % ee 149 150 151 158 LA LA 1M Cl DCM 72 % 1) BF 3 *Et 2, Et 3 Si, DCM 2) IB, C 63 % 2 154 155 F 9 examples up to 94 % yield ee 75 to 94 % n,m = 1 or 2 = alkyl, F 152 153 TMS BF 3 *Et 2, DCM 76 % 156 157 F LA Ts Ts 88 % d.r. 3:1 159 [Ir( F ppy) 2( t Bubpy)]PF6 (1 mol%) DMS, visible light Ts 89 % 160 Tf (C2)3 Ts 161 81 % 162 93% 163 d.r. > 10:1 d.r. 1:1 Ts I C 2 Et 80 % 98 % 71 % 164 d.r. > 10:1 165 d.r. 2:1 166 d.r. 5:1 Ts 168 Ts 169 Cl 2, Pd/C, 90 % Cl (2M in Et 2), DCM, rt 99 % Ts 167 1) 3, DCM, -78 C 2) DMS 16 examples up to 98 % yield d.r. varies, but mostly > 5:1 98 % Ms, DCM, rt 86 % Ts Ts C P Et Et irrad. cond. 172 nbuli, 84 % 98 % 173 C C 174 Grubbs II (/-)-epiraikovenal 42 % overall yield 175 Yoon et al., Angew. Chem. Int. Ed. 2014, 8991 8994. Ms 170 171 11 12.07.2017

otochemical methods 6 W g lamp (254 nm) C, 6 h 176 177 178 Et 2 C C Et 2 C C 41 % 179 40 % 180 44 % 181 12 % 182 9 % 183 14 examples up to 44 % yield of aziridine and up to 29 % cyclobutane formation clean reaction 6 W g lamp (312 nm) C, 2h C 2 Et C 2 Et Et 2 C 184 185 55 % 8 % 186 C 2 Et [2 2] C 2 Et C 2 Et Et 2 C 187 188 189 190 C 2 Et 12 mm in C 9.5 ml/min, 1 h 254 nm flow reactor Et 2 C 191 192 0.91 g, 51 % Productivity 21.8 g/d Milburn et al., Angew. Chem. Int. Ed. 2013, 1499 1502. 12 12.07.2017

C-C-bond activation synthesis of tropane systems [{h(cd)cl}2] (2.5 mol%) L (6 mol %) 1,4-dioxane, 130 C, 12 h 1 4 1 3 5 193 194 5 4 P 2 P 2 L = 204 [h I ] 200 15 examples up to 96 % yield ee 95 up to >99 % Tolerant to (protected) functional groups esters, prot. alcohols, nitriles C 2 Bn F 195 196 197 198 199 Cramer et al., Angew. Chem. Int. Ed, 2014, 3001 3005. 203 [h III ] 202 [h III ] [h I ] 201 [{h(cd)cl}2] (2.5 mol%) L (6 mol %) 1,4-dioxane, 110 C, 12 h 1 1 2 205 206 F 3 C C 2 Et 13 examples up to 89 % yield ee 95 up to >99 % 2 C TIPS 207 208 209 210 with higher temperatures: Cramer et al., Angew. Chem. Int. Ed, 2014, 9640 9644. [{h(cd)cl}2] (5 mol%) L (6 mol %) 1,4-dioxane, 130 C, 12 h C 2 I 2, ac 3, 1,4-dioxane, r.t. 211 212 I 213 81 % o2s, ee > 99 % 13 12.07.2017

Azomethin Ylides Dearomatization and [6 3]-Cycloaddition C 2 Bn TMS cat. TFA (5 mol%) Bn DCM 214 2 215 85 % 2 2 Bn Bn 216 2 2 217 Bn 14 examples up to 95 % yield only single products formed [Cu(C)4]BF4 (5 mol%) L (5 mol%) Et 3, 1,4-dioxane, r.t., 0.5 h * 1 1 2 C 225 226 ( epimer at C * 227 ) dienophile, 3 major product r.t., 3 h * S 1 2 C P 2 ( epimer at C * Fe ) = L 228 major product 229 218 2 24 examples up to 96 % yield d.r. 75:25 up to >95:5 36 up to 97 % ee generation of 8 stereocenters 1 = substituted aryl, when alkyl no reaction = substituted aryl, when alkyl low ee =, Bn 2 Bn 2 2 Bn Bn Bn Cl S C 2 Ts 2 Cl Bn 9 eq., 23 h, 81 % 3 eq., 21 h, 95 % 4 eq., 22 h, 94 % 9 eq., 24 h, 62 % 2 2 225 219 220 221 222 Bn Bn DCM 66 % 2 eq. 2 6 eq. 2 Bn DCM 57 % 2 2 223 224 Bn Bn Piettre et al., Angew. Chem. Int. Ed. 2011, 472 476. C 2 [CuL*] [6 3] [4 2] exo 1 2 C 1 230 231 232 2 C 1 234 2 C F 2 C 58 %, ee 87 % 62 %, ee 94 % 235 236 Waldmann et al., Angew. Chem. Int. Ed. 2012, 9512 9516. Br 14 12.07.2017

Azomethin Ylides Cyano Group as a traceless activator C 1 AgAc (10 mol%) Cs 2 C 3 (20 mol%) C ab 4 (20 mol%) B 3 *TF (1.2 eq.), 0 C to r.t. 1 TF, r.t. 237 238 239 240 2 1 25 examples up to 96 % yield [3 2] and in gram scale and up to 94 % yield in decyanation and in gram scale endo/exo 10:1 up to >20:1 = substituted aryls, heteroaryls, alkyl 1 =, =, = C 2, C 2, C, S 2 Boc C C 2 2 TBDPS C 2 C 2 56 % o2s 70 % o2s 52 % o2s 76 % o2s 80 % o2s 241 242 243 244 245 246 C C 2 2 C LA, TF, rflx 80 % AgAc (20 mol%) DBU (20 mol%) 2 C 75 % 247 C 248 251 (/-)-isoretronecanol C 2 B 3 *TF, ab 4 (20 mol%) 2 C 84 % 249 2 C 250 C 2, rflx quant. 15 12.07.2017 Zhang et al., Angew. Chem. Int. Ed. 2015, 6306 6310.

Allylic transformations [{Ir(cod)Cl}2] (2.5 mol%) ()-L (10 mol%) ' mcba ' (0.5 eq.) DCE, 50 C, 24 h 252 253 P ( )-L 16 examples up to quant. yield 63 to 99 % ee = (substituted) aryl, heteroaryl, (substituted) alkyl ' =, Et, ipr, PMB, Bn Carreira and oggen, Angew. Chem. Int. Ed. 2011, 5568 5571. alkyl 1) [{Ir(cod)Cl}2] (2.5 mol%) 2) Protection (S)-L (10 mol%) 2 e.g. 4 eq. Et 3, 1,2 eq. 3 S 3 2 eq. BzCl,4 h, r.t. PG 254 5 eq. DMF, 2--TF, 24 h, r.t. 255 256 1) [{Ir(cod)Cl}2] (2.5 mol%) (S)-L (5 mol%) 1,2 eq. 3 S 3 DMF, 24 h, r.t. alkyl 2 2) Protection e.g. 4 eq. Et 3, 2 eq. BzCl,4 h, r.t. alkyl PG 257 258 259 : 20 examples up to 85 % yield 80 to 99 % ee alkyl: 7 examples up to 87 % yield 68 to 99 % ee = (substituted) aryl, heteroaryl PG = Bz, Ts, Fmoc, 3 Cl alkyl = (substituted) (cyclo)alkyl PG = Bz, Ts, Fmoc, 3 Cl Carreira et al., Angew. Chem. Int. Ed. 2012, 3470 3473. [{Ir(cod)Cl}2] (2.5 mol%) (S)-L (10 mol%) S' P()(Bu)2 (0.5 eq.) 'S DCE, 50 C, 24 h 260 261 BnS = el.-poor aryl [{Ir(cod)Cl}2] (2.5 mol%) (S)-L (10 mol%) P()(Bu)2 (0.5 eq.) DCE, r.t, 72 h S' 1 : 1 P ( S)-L 12 examples up to 92 % yield 86 to 97 % ee = el.-rich (substituted) aryl, heteroaryl ' = Bn,, PMB, Cy, p--c 6 4 Carreira et al., Angew. Chem. Int. Ed. 2012, 8652 8655. ' [{Ir(cod)Cl}2] (4 mol%) ' (S)-L (12 mol%) KF 2 (1.5 eq.), TFA (2.5 eq.) KF 3 B nbu 4 Br (10 mol%), 262 263 1,4-dioxane, 25 C, 6h 264 26 examples up to 99 % yield 95 to >99 % ee = (substituted) aryl, heteroaryl ' = aryl, heteroaryl, (cyclo)alkenyl/alkyl Carreira et al., Angew. Chem. Int. Ed. 2013, 7532 7535. 16 12.07.2017

Allylic transformations [{Ir(cod)Cl}2] (3 mol%) 4 ()-L (12 mol%) 1 Sc(Tf)3 (10 mol%) TMS 1,4 - dioxane, r.t., 12 h 265 266 1 267 P ( )-L 21 examples up to 95 % yield 91 to >99 % ee 1 = (substituted) aryl, heteroaryl =, = Br,, (substituted) alkyl Carreira et al., Angew. Chem. Int. Ed. 2014, 10759 10762. Boc [{Ir(cod)Cl}2] (1 mol%) alkyl (S)-L (4 mol%) BrZn-alkyl, r.t., 12 h 268 269 270 22 examples up to 81 % yield 80 to >99 % ee alkyl = (substituted) alkyl, cycloalkyl = (substituted) aryl, heteroaryl, vinyl, propargyl P ( S)-L 17 12.07.2017 Carreira et al., Angew. Chem. Int. Ed. 2015, 7644 7647.

Cross Coupling reactions i(cd)2 (5 mol%) Et 3 (1.1 eq.), Zn (2 eq.) 12 examples up to I C, 23 C 95 % yield 271 1 272 1 4 conditions I 1 Bn 4 1 93 % 40 % 273 274 275 276 i(cd)2 (5 mol%) Et 3 (1.1 eq.), Zn (2 eq.) 1 C, 23 C 277 278 C 2 C 2 2C C2 12 examples up to 98 % yield C 2 C 2 1 C 2 C 87 % 76 % 98 % 61 % 279 280 281 282 = ester, amide, nitrile = Br, I 1, =,, LG Cl Cl [{Pd(allyl)Cl}2] (5 mol%) Et 2 Zn, L1 (30 mol%) TF TMS 289 290 C 2 78 % 90 295 % 88 % ee 86 % ee 296 80 % 76 % ee P TF C 2 C 2 rac 291 292 [{Pd(allyl)Cl}2] (5 mol%) ' 2 Zn (2.4 eq.), L1 (15 mol%) [{Pd(allyl)Cl}2] (5 mol%) ' 2 Zn (2.4 eq.), L2 (15 mol%) C 2 52 % 80 % ee 1 L1 L2 TF 1 293 294 Ts 82 % 80 % ee TMS 3 examples up to 67 % yield and up to 87 % ee 11 examples up to 92 % yield and up to 90 % ee = ester,, Weinreb - amide, C, C() 1 =, Et, ipr LG = Cl, Ac, 2 C 297 298 299 Stoltz et al., Angew. Chem. Int. Ed. 2016, 7437 7440. Maulide et al., Angew. Chem. Int. Ed. 2014, 7068 7073. 18 12.07.2017

Cross Coupling reactions I I or II (15 mol%) ipr 2 Et (1.5 eq.) blue LEDs C, r.t. 24 h 300 301 15 examples up to 91 % yield [PdCl2(P3)2] (0.2 mol%) antphos (0.24 mol%) ()4biphenol (1 mol%) 1 Ac 2, 132 C, 2 h 1 310 311 11 examples up to 77 % yield no loss of stereochemistry II, 91 % 302 I, 83 % 303 I, 83 % 304 Boc Co I: = Sn 3 Ts II: = ipr I, 89 % II, 91 % py 305 306 Ac 41 % 312 69 % 313 C 2 nbu 60 % 51 % P 2 P 2 315 316 317 314 TBS TBS 1) Allyl alcohol, IS, DCM, 90 % 2) I (15 mol%), ipr 2 Et (1.5 eq.) (/-)-samin blue LEDs, C, 24 h, r.t., 97 % 307 308 309 C 2 [PdCl2(nbd)] (1 mol%) antphos (1.2 mol%) MP, 132 C, 93 % 318 319 320 (-) and ()-10-epi-Aspewentin C Carreira et al., Angew. Chem. Int. Ed. 2011, 11125 11128. Grubbs, Stoltz et al., Angew. Chem. Int. Ed. 2015, 11800 11803. 19 12.07.2017

Cross Coupling reactions [Ir(cod)Cl]2 (2 mol%), L (4 mol%), TBD, LiCl, proton sponge Cl TF 25 C 321 322 323 12 examples up to >99 % yield b:l > 90:10, up to 98 % ee 2 2 324 325 =, 2, 2, Br,, = ester, nitrile, C() P L 332 C 2 Et 327 3S()I, a, DMS 82 % C 2 Et Grubbs-oveyda II DCM allylmgcl, TF, -78 C 71 % K 2 s 4, M, 326 TF/ 2 65 % 331 81 % C 2 Et DIBAL, TF, -78 C 43 % 330 C 2 Et 328 K 2 s 4, M, TF/ 2 59 % 329 C 2 Et 20 12.07.2017 Stoltz et al., Angew. Chem. Int. Ed. 2016, 16092 16095.

C- xidation Ts 333 I 2 (2.5 mol%), I(mCBA)2 (1 eq.) DCM, r.t., 12 h 334 Ts Ts Ts Ts Ts Ts 335 99 % 336 95 % 337 72 % 338 77 % Ts 2 S 82 % 90 % 339 340 31 examples up to 99 % yield selectivity >95 % 2.2. eq. nbuli, 0 C, 2 h; then 1.1 eq. ZnCl 2, 1 h; then 1.3 eq. I 2, 2 h to r.t. 64 % 348 349 350 18 examples up to 75 % yield 5-, 6- and 7-membered rings = C 2, C= = (cyclo) alkyl, aryl, amide Sarpong et al., Angew. Chem. Int. Ed. 2013, 2194 2197. 74 % Bu 351 I I(mCBA) 2 347 Ts 341 Ts I(mCBA) I(mCBA) Ts mcba Ts I 346 Ts I Ts 343 344 Ts 345 1) 2 eq. nbuli; then 1 eq. I 2 TF, -78 C 90 % 352 2) aset ()-lyconadin A 353 76 % 342 Muniz and Martínez, Angew. Chem. Int. Ed. 2015, 8287 8291. Sarpong et al., J. Am. Chem. Soc. 2009, 11187 11194. 21 12.07.2017

Various thods Se, rflx, 12 h Se (TMS)3 Si, AIB isooctane or, rflx, 1 h 354 355 356 357 enylselenoacrylate as ethylene equivalent 12 examples up to to 97 % yield (Diels-Alder) and up to 99 % yield (reduction) Jung et al., Angew. Chem. Int. Ed. 2013, 2060 2062. 1 TMS C 4 TBAT (2 eq.), TF, 40 C, 8-12 h Tf 358 359 360 361 1 2 4 = (cyclo) alkyl,, (substituted) aryl 4 =, cyclic 1 TMS Tf C 4 362 TBAT (2 eq.), TF, 40 C, 8-12 h 1 363 4 2, 4 =, C 2, Three component aryne reactions 32 examples up to 96 % yield 1 `= (substituted) aryl = alkyl, (substituted) aryl Stoltz et al., Angew. Chem. Int. Ed. 2011, 4488 4491. 1 Y 364 365 C Tf (1.1 eq.) DCM, 0 C to r.t. = (substituted) aryl, heteroaryl, (cyclo) alkyl, vinyl, Cl, Br, I 1 = (substituted) aryl, heteroaryl, (cyclo) alkyl 1 Y = C 2,, (C2)2, (C2)3, benzannulated Y = S, PG 36 examples up to 88 % yield tal-free formal 366 [222]-Cycloaddition Maulide et al., Angew. Chem. Int. Ed. 2016, 12864 12867. 22 12.07.2017

Various thods Ligand (20 mol%) P()3 (40 mol%) 2 Zn (3 eq.), 367 368 369 370 Asymm. alkynylation of acetaldehyde 11 examples up to 98 % yield = aryl, alkenyl, silyl, alkyl, C 2, highly functionalized residues Trost and Quintard, Angew. Chem. Int. Ed. 2012, 6704 6708. n 371 1 1 372 n 373 20 examples up to 90 % yield Tf 2, collidine DCM, µwave Tf 2, collidine DCM, µwave Tf 2, collidine DCM, µwave 1 1 n n 374 376 C C 2 375 =,, C2 Et, C 2 PG, C, Br, C 2 Cl 1 =, n = 1, 2 = alkly, (C2)3 Cl n = 1, 2 48 % 78 % 377 378 Tf 2, collidine 379 380 C [3,3] 2 381 382 383 Maulide et al., Angew. Chem. Int. Ed. 2010, 1583 1586. 1) Br 2 (2.6 eq.), Et 2 (5.2 eq.) 1 2) Et 2 Zn (2.6 eq.) 2 C C 2 Br 3) CBr 3 (2.6 eq.) 4) substrate, L (1.1 eq.) DCM, -42 C to r.t., 4 h B L 384 385 1 Bu 15 examples up to 92 % yield d.r. > 20:1 94 up to 98 % ee 1 =, = (substituted) aryl, (cyclo) alkyl =, alkyl, (if alkyl low yield) Enantioselective Bromocyclopropanation Charette et al., Angew. Chem. Int. Ed. 2015, 14108 14112. 23 12.07.2017