Physics (B): Physics in Context

Similar documents
PHYA5/1. General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2010

Physics (B): Physics in Context

PHYA5/2D. General Certificate of Education Advanced Level Examination June Unit 5D Turning Points in Physics Section B

PHYSICS A Unit 5 Nuclear and Thermal Physics Section A PHYA5/1

PHYA5/1R (JUN15PHYA51R01) General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A

PA01. General Certificate of Education January 2007 Advanced Subsidiary Examination

PHYA5/2C. (JUN14PHYA52C01) WMP/Jun14/PHYA5/2C/E5. General Certificate of Education Advanced Level Examination June Section B

PHA8/W PHYSICS (SPECIFICATION A) Unit 8 Nuclear Instability: Turning Points in Physics Option

PHYA5/2D. General Certificate of Education Advanced Level Examination June Unit 5D Turning Points in Physics Section B

PHYA1. (JUN15PHYA101) WMP/Jun15/PHYA1/E4. General Certificate of Education Advanced Subsidiary Examination June 2015

PHYA4/2. (JUN14PHYA4201) WMP/Jun14/PHYA4/2/E4. General Certificate of Education Advanced Level Examination June 2014

PHYA1. (JUN14PHYA101) WMP/Jun14/PHYA1/E5. General Certificate of Education Advanced Subsidiary Examination June 2014

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity (JUN10PHAY101 TOTAL

PHYA5/2C. General Certificate of Education Advanced Level Examination June Section B. Monday 27 June am to 10.45am (JUN11PHYA52C01) PMT

PHYA1. (JUN13PHYA101) WMP/Jun13/PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2013

PHYA4/2. General Certificate of Education Advanced Level Examination June Unit 4 Fields and Further Mechanics Section B

PHYA5/2B. General Certificate of Education Advanced Level Examination June Unit 5B Medical Physics Section B

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5: Approved specimen question paper. Version 1.3

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity

Physics (B): Physics in Context

GCSE 0247/02 SCIENCE HIGHER TIER PHYSICS 3

PA04/2 (JUN09PA04201) General CertiÞ cate of Education June 2009 Advanced Level Examination

Additional Science. Physics PH2HP. (Jun14PH2HP01) General Certificate of Secondary Education Higher Tier June Unit Physics P2.

PA01. General Certificate of Education January 2008 Advanced Subsidiary Examination

PHA5/W. General Certificate of Education June 2007 Advanced Level Examination

PA04/2. PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy. Section B

PHYA4/2. (JUN15PHYA4201) WMP/Jun15/PHYA4/2/E3 PMT. General Certificate of Education Advanced Level Examination June 2015

PA04/2 (JAN09PA0401. General Certifi cate of Education January 2009 Advanced Level Examination

PHB5. PHYSICS (SPECIFICATION B) Unit 5 Fields and their Applications. General Certificate of Education January 2004 Advanced Level Examination

Surname Other Names Centre Number Candidate Number Candidate Signature. General Certificate of Secondary Education Higher Tier June 2014

Additional Science. Physics PHY2H (JAN10PHY2H01) General Certificate of Secondary Education Higher Tier January Unit Physics P2.

PHYA5/2C. (JUN15PHYA52C01) WMP/Jun15/PHYA5/2C/E5. General Certificate of Education Advanced Level Examination June Section B PMT TOTAL

PHYA4/2. (JAN13PHYA4201) WMP/Jan13/PHYA4/2. General Certificate of Education Advanced Level Examination January 2013

PHYA5/2AR (JUN15PHYA52AR01) General Certificate of Education Advanced Level Examination June Section B PMT TOTAL.

PHYA4/2. General Certificate of Education Advanced Level Examination January Unit 4 Fields and Further Mechanics Section B

PHYSICS (SPECIFICATION A) Unit 1 Particles, Radiation and Quantum Phenomena

PHYA4/2. (JUN13PHYA4201) WMP/Jun13/PHYA4/2. General Certificate of Education Advanced Level Examination June 2013

PA01. PHYSICS (SPECIFICATION A) Unit 1 Particles, Radiation and Quantum Phenomena

ERRATUM NOTICE ERRATUM NOTICE

PHA7/W. General Certificate of Education June 2007 Advanced Level Examination

Physics (B): Physics in Context

PHYA2. (JUN13PHYA201) WMP/Jun13/PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves. (JUN11PHYA201) WMP/Jun11/PHYA2 PMT

PHYA1. General Certificate of Education Advanced Subsidiary Examination January Particles, Quantum Phenomena and Electricity

CHAPTER 7 TEST REVIEW

Additional Science M (modular) MPH2HP. Physics M (modular) MPH2HP. (Jan14MPH2Hp01) General Certificate of Secondary Education Higher Tier January 2014

GCSE 247/02 SCIENCE PHYSICS HIGHER TIER PHYSICS 3. A.M. FRIDAY, 27 May minutes. Candidate Name. Candidate Number.

Physics (B): Physics in Context

P.M. THURSDAY, 16 January hour

PHYA5/2A. General Certificate of Education Advanced Level Examination June Unit 5A Astrophysics Section B (JUN10PHYA52A01) PMT TOTAL

PHYA5/2C. General Certificate of Education Advanced Level Examination June Unit 5C Applied Physics Section B

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

Additional Science. Physics PH2FP. (Jun15PH2FP01) General Certificate of Secondary Education Foundation Tier June 2015.

PHYA2. (JUN15PHYA201) WMP/Jun15/PHYA2/E4. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA5/2A. General Certificate of Education Advanced Level Examination June Unit 5A Astrophysics Section B. (JUN11PHYA52A01) WMP/Jun11/PHYA5/2A

PHYSICS (SPECIFICATION A) PA10

Additional Science. Physics PH2HP. (Jun15PH2HP01) General Certificate of Secondary Education Higher Tier June Unit Physics P2.

Physics (B): Physics in Context PHYB1

PHYA5/2A. (JUN13PHYA52A01) WMP/Jun13/PHYA5/2A. General Certificate of Education Advanced Level Examination June Unit 5A Astrophysics Section B

Thursday 19 June 2014 Morning

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

1. This question is about the Rutherford model of the atom.

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1]

A-level PHYSICS A PHYA4/2. Unit 4 Fields and Further Mechanics. Section B. Monday 20 June 2016 Morning

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

AS PHYSICS A PHYA1. Unit 1 Particles, Quantum Phenomena and Electricity. Morning. (JUN16PHYA101) WMP/Jun16/E4. Materials. Instructions.

PHYA4/2. General Certificate of Education Advanced Level Examination June Unit 4 Fields and Further Mechanics Section B

PHYA4/2. (JAN12PHYA4201) WMP/Jan12/PHYA4/2. General Certificate of Education Advanced Level Examination January 2012

PHYA2. General Certificate of Education Advanced Subsidiary Examination January Mechanics, Materials and Waves. (JAN13PHYA201) WMP/Jan13/PHYA2

PHA5/W. PHYSICS (SPECIFICATION A) Unit 5 Nuclear Instability: Astrophysics Option

PHYA5/2B (JUN15PHYA52B01) General Certificate of Education Advanced Level Examination June Unit 5B Medical Physics Section B

PA02. PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

UNIT 13: NUCLEAR CHEMISTRY

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Chapter 21 Nuclear Chemistry

PHYSICS (SPECIFICATION A) Unit 5 Nuclear Instability: Astrophysics Option

AS PHYSICS 7407/1. Paper 1. Tuesday 24 May 2016 Morning Time allowed: 1 hour 30 minutes *JUN *

Nuclear Physics and Nuclear Reactions

PA04/2 (JUN08PA0401) General CertiÞ cate of Education June 2008 Advanced Level Examination

AS PHYSICS 7407/1. Surname. Other Names. Centre Number. Candidate Number. Candidate Signature. Paper 1

PA02 ((JUN08PA0201)) General CertiÞ cate of Education June 2008 Advanced Subsidiary Examination

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi.

A-level PHYSICS A PHYA5/2A. Unit 5A Astrophysics. Section B. Wednesday 21 June 2017

Physics A Unit 5A Astrophysics Section B PHYA5/2A

Physics (Specification A)

A-level PHYSICS A PHYA5/2A. Unit 5A Astrophysics. Section B. Tuesday 28 June 2016

Physics Unit 3 Investigative and Practical Skills in AS Physics PHY3T/Q09/test

PHYA2. General Certificate of Education Advanced Subsidiary Examination January Mechanics, Materials and Waves

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYSICS A 2825/04. Nuclear and Particle Physics. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes

PHY6T/Q10/test. General Certificate of Education Advanced Level Examination June Investigative and Practical Skills in A2 Physics

PHYSICS A 2825/04. Nuclear and Particle Physics. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

P.M. WEDNESDAY, 25 May hour

Specimen Paper. Physics. AQA Level 1/2 Certificate in Physics Specimen Paper. Paper 2 TOTAL. Time allowed 1 hour 30 minutes

PHA7/W PHYSICS (SPECIFICATION A) Unit 7 Nuclear Instability: Applied Physics Option

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43

PHB2 (JUN08PHB201) General CertiÞ cate of Education June 2008 Advanced Subsidiary Examination

Transcription:

Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics (B): Physics in Context PHYB5 3 4 Unit 5 Energy under the microscope 5 Module 1 Matter Under the Microscope Module 2 Breaking Matter Down Module 3 Energy from the Nucleus TOTAL Monday 18 June 2012 9.00 am to 10.45 am For this paper you must have: l l l a pencil and a ruler a calculator a Data and Formulae Booklet (enclosed). Time allowed l 1 hour 45 minutes Instructions l Use black ink or black ball-point pen. Use pencil only for drawing. l Fill in the es at the top of this page. l Answer all questions. l You must answer the questions in the spaces provided. around each page or on blank pages. l Do all rough work in this book. Cross through any work you do not want to be marked. l Show all your working. Information l The marks for questions are shown in brackets. l The maximum mark for this paper is 100. l You are expected to use a calculator where appropriate. l A Data and Formulae Booklet is provided as a loose insert. l You will be marked on your ability to: use good English organise information clearly use specialist vocabulary where appropriate. (JUN12PHYB501) PHYB5

2 Answer all questions. 1 (a) Figure 1 shows the p-v diagram for the gas in a cylinder of an engine operating in a Carnot Cycle. Figure 1 C 6 5 4 pressure / 10 5 Pa 3 D 2 1 B A 0 5 10 15 20 25 30 volume / 10 5 m 3 1 (a) (i) In the table below tick each that corresponds to an adiabatic change. change A B B C C D D A adiabatic 1 (a) (ii) State the quantity in the first law of thermodynamics that is zero (0) when the change is adiabatic. (1 mark) 1 (a) (iii) State the quantity in the first law of thermodynamics that is zero when the change is isothermal. (1 mark) 1 (a) (iv) Describe how data from the p-v graph can be used to confirm that a change that takes place is an isothermal change. (02)

3 1 (b) An engineer designs a new engine and reports that, with a hot reservoir at a temperature of 450 K and a cold sink at a temperature of 300 K, each cylinder would deliver 33 kw to the cold sink, as shown in the Sankey diagram in Figure 2. hot reservoir 450 K Figure 2 33 kw useful output cold sink at 300 K 2 The engineer reported that of the energy supplied was useful energy. When drawing 5 the Sankey diagram, the engineer forgot to include P hot, the input power from the hot reservoir and P useful, the useful output power of the engine. 1 (b) (i) Calculate, in kw, the values for P hot and P useful that are consistent with the energy that the engineer recorded as passing into the cold sink. P hot... kw P useful... kw Turn over (03)

4 1 (b) (ii) The complete engine has 4 cylinders, each delivering 33 kw to the cold sink. Energy is transferred to the cold sink by pumping a coolant, consisting of water and antifreeze, through the engine block. The temperature of the coolant changes by 7.5 K as it passes through the block. The specific heat capacity of the coolant is 3.1 kj kg 1 K 1. Calculate, in kg s 1, the mass flow rate of the coolant that the designer s data would suggest. Give your answer to an appropriate number of significant figures. mass flow rate... kg s 1 (4 marks) 1 (c) (i) Another engineer carries out a peer review and suggests that the reported efficiency of the cylinder is inconsistent with the temperatures that were quoted for the hot reservoir and cold sink in Figure 2. Explain, with an appropriate calculation, whether or not you agree with the reviewer. (4 marks) (04)

5 1 (c) (ii) Use your answers to part (b)(i) and data from Figure 2 to calculate the total entropy change that would take place each second when the engine is operating. Give an appropriate unit for your answer. change in entropy... unit... (3 marks) 1 (c) (iii) Explain whether your answer to part (c)(ii) suggests that the operation of the engine has been reported correctly. (1 mark) 20 Turn over for the next question Turn over (05)

6 2 Figure 3 shows the path of electrons that have been accelerated in an electron gun and then pass through a velocity selector. Figure 3 electron gun A metal plates cathode + anode 2 (a) (i) Electrons are produced at the cathode of the electron gun by thermionic emission. Explain what is meant by thermionic emission and why electrons produced are likely to have a range of speeds. B velocity selector electron path 2 (a) (ii) The diagram shows the path of electrons that are moving at a speed of 4.5 10 7 ms 1. Calculate the accelerating potential difference between the cathode and anode in the electron gun that is required to produce electrons travelling at this speed. Assume that the electrons have zero velocity when they leave the cathode. Neglect the relativistic change in mass. accelerating pd... V (3 marks) (06)

7 2 (b) In the shaded region shown in Figure 3 it is possible to have either an electric field or a magnetic field, or both types of field at the same time when operating as a velocity selector. In the situation shown in Figure 3 there is a magnetic field but no electric field. 2 (b) (i) Place a tick in the that corresponds to the correct direction of the magnetic field. Towards A Towards B Into the page Out of the page Explain how you decided on your answer. 2 (b) (ii) The magnetic flux density of the magnetic field is 1.4 mt. Calculate the radius of the path of electrons that move at 4.5 10 7 ms 1. Neglect the relativistic change in mass. radius... m (3 marks) Turn over (07)

8 2 (c) (i) Show that the theory of relativity predicts that the percentage change in the mass of an electron as it accelerates from rest to 4.5 10 7 ms 1 is about 1%. percentage change in mass... % (4 marks) 2 (c) (ii) State and explain the effects that the relativistic increase in mass would have on your answers for the accelerating potential difference calculated in part (a)(ii) and the radius of the path calculated in part (b)(ii). potential difference... path radius... (08)

9 2 (d) A potential difference is now applied across the gap between the plates A and B. This produces a uniform electric field in the shaded region between the metal plates in addition to the magnetic field of 1.4 mt. Electrons travelling at 4.5 10 7 ms 1 now pass straight through the velocity selector, as shown in Figure 4. Figure 4 A electron path 2 (d) (i) State and explain which one of the metal plates A or B is positive. 2 (d) (ii) The metal plates are 35 mm apart. Calculate the potential difference between the plates so that there is no deflection of the electron beam. B potential difference... V (4 marks) 22 Turn over (09)

10 3 To investigate and treat an overactive thyroid gland either iodine-131( 131 53I) or iodine-123( 123 53I) can be used. Some properties of these nuclides are shown in the table. nuclide useful emissions gamma ray energy/kev Iodine-131 is produced by bombarding tellurium with neutrons in a nuclear reactor and is then transported to the hospital. Iodine-123 is produced using a cyclotron that is on-site. Iodine-123 decays by a process called electron capture in which the nucleus first captures an electron from an electron shell to form tellurium-123 which then almost immediately emits the gamma ray photon. In one patient the biological decay constant for iodine is 4.4 10 7 s 1 so that the biological half-life is 1.6 10 6 s. 3 (a) (i) Two of the emissions from iodine-131 are shown in the table. State the full name of the other particle that must be emitted when iodine-131 decays. (1 mark) 3 (a) (ii) State the particle physics law that requires this particle to be emitted. (1 mark) 3 (b) (i) Explain what is meant by the biological half-life. half-life decay constant/s 1 131 53 I β and γ 360 8.04 days 9.98 10 7 123 53I γ 160 13.0 hours 1.47 10 5 3 (b) (ii) Show that the effective half-life of iodine-131 when injected into the patient is about 5.6 days. (3 marks) (10)

11 3 (c) A doctor decides to administer a dose of iodine-123 to a patient. The dose must have an initial activity of 240 GBq. 3 (c) (i) Calculate the mass, in g, of iodine-123 that is required in the dose. mass... g (4 marks) 3 (c) (ii) The effective half-life of iodine-123 can be assumed to be the same as the physical half-life. Calculate the time taken, in hours, for the activity to fall to 15 GBq. time... hours 3 (d) (i) Explain why iodine-123 has to be produced on-site whereas iodine-131 can be produced using a reactor that is some distance away. Turn over (11)

12 3 (d) (ii) Give two reasons why iodine-123 might be preferred to iodine-131 for the treatment of a patient. reason 1... reason 2... 3 (e) Explain why the properties of radioactive iodine isotopes are useful for investigating whether a thyroid gland is operating normally and for treating an overactive thyroid. Include in your answer any medical or biological problems that may arise from the use of the radioactive isotopes. The quality of your written communication will be assessed in your answer. (6 marks) 23 (12)

13 4 The Sun s energy is produced by the fusion of protons. Near the Sun s surface the protons have a mean kinetic energy of 0.75 ev which is too low for fusion to take place. The core, however, has a temperature of about 1.5 10 6 K and a pressure of about 1.0 10 16 Pa. This core consists of a plasma of (mainly) protons. Within the core the density, pressure and temperature of the proton plasma are sufficiently high for nuclear fusion to occur. The energy is thought to be produced mainly by a cycle called the hydrogen cycle. The overall effect in one cycle is that 4 protons fuse to form a helium nucleus. The total mass of hydrogen that fuses each second is 7.0 10 11 kg of which about 5.0 10 9 kg per second is converted into energy that is radiated. When answering the following questions assume, where necessary, that the plasma behaves like an ideal gas. 4 (a) (i) Use the mean value of the kinetic energy of protons near the Sun s surface to calculate the temperature near its surface. temperature near the Sun s surface... K (3 marks) 4 (a) (ii) Calculate the closest distance of approach for two protons near the Sun s surface. closest distance of approach... m (3 marks) Turn over (13)

14 4 (a) (iii) Explain why fusion cannot occur near the surface. (3 marks) 4 (b) (i) Calculate the number of protons in each cubic metre of the Sun s core. 4 (b) (ii) Calculate the density of the Sun s core. number of protons... (3 marks) density of the Sun s core... kg m 3 (14)

15 4 (c) (i) Show that the data given in the passage on page 13 suggest that every second, about 4 10 38 protons fuse to form helium nuclei. 4 (c) (ii) The total binding energy of a helium nucleus is 4.5 10 12 J. Determine with an appropriate calculation whether the mass that is converted into radiant energy, stated in the passage, is consistent with this value. (4 marks) 20 Turn over (15)

16 5 Figure 5 shows a diagram of a nuclear reactor that is used to provide energy for a power station. Figure 5 boron rods pressuriser steel vessel water W A steam water pump concrete shield 5 (a) (i) Describe the effect of raising the boron rods on the electrical power output of the power station. (1 mark) 5 (a) (ii) Explain why the power output is affected by the position of the boron rods. 5 (b) State the name of the component labelled A that is part of the reactor core. (1 mark) (16)

17 5 (c) The water labelled W has two functions. Name each function and discuss briefly the physics involved in each process. function 1... function 2... (4 marks) Turn over for the next question Turn over (17)

18 5 (d) A fission yield graph shows the relative amounts of some of the nuclei produced when neutron induced fission takes place in a nuclear reactor. The graph in Figure 6 shows the fission yield of uranium-235. The fission yields are on the y-axis and are shown as a percentage using a logarithmic scale. About 2.9 10 11 J of energy is released when a nucleus undergoes fission. 10 5 Figure 6 1 0.5 fission yield / % 0.1 0.05 X 0.01 0.005 0.001 80 90 100 110 120 130 140 150 160 nucleon number 5 (d) (i) Estimate the percentage of the fission products that contains 90 nucleons. (1 mark) 5 (d) (ii) Suggest the nucleon number of the nuclide that is likely to be produced at the same time as the nuclide labelled X on Figure 6. (1 mark) (18)

19 5 (d) (iii) Assume that when a nucleus in the reactor splits into two nuclei with the same number of nucleons, each nucleus takes half of the energy released. Calculate the speed of the nuclei immediately after they are formed from uranium. speed of nuclei... m s 1 (3 marks) 5 (d) (iv) Explain why, when the nucleus splits to form two nuclei, they will have a lower speed than that calculated in part (d)(iii) and are unlikely to move in opposite directions following fission. 15 END OF QUESTIONS (19)

20 There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright 2012 AQA and its licensors. All rights reserved. (20)