Research Article A Data Envelopment Analysis Approach to Supply Chain Efficiency

Similar documents
Modeling Dynamic Production Systems with Network Structure

MULTI-COMPONENT RETURNS TO SCALE: A DEA-BASED APPROACH

Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors

Groups performance ranking based on inefficiency sharing

European Journal of Operational Research

Ranking Decision Making Units with Negative and Positive Input and Output

PRIORITIZATION METHOD FOR FRONTIER DMUs: A DISTANCE-BASED APPROACH

A buyer - seller game model for selection and negotiation of purchasing bids on interval data

Revenue Malmquist Index with Variable Relative Importance as a Function of Time in Different PERIOD and FDH Models of DEA

A New Method for Optimization of Inefficient Cost Units In The Presence of Undesirable Outputs

Measuring the efficiency of assembled printed circuit boards with undesirable outputs using Two-stage Data Envelopment Analysis

Modeling undesirable factors in efficiency evaluation

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Subhash C Ray Department of Economics University of Connecticut Storrs CT

Research Article A New Roper-Suffridge Extension Operator on a Reinhardt Domain

Determination of Economic Optimal Strategy for Increment of the Electricity Supply Industry in Iran by DEA

Prediction of A CRS Frontier Function and A Transformation Function for A CCR DEA Using EMBEDED PCA

Classifying inputs and outputs in data envelopment analysis

Research Article A New Global Optimization Algorithm for Solving Generalized Geometric Programming

Special Cases in Linear Programming. H. R. Alvarez A., Ph. D. 1

A ratio-based method for ranking production units in profit efficiency measurement

Department of Economics Working Paper Series

Developing a Data Envelopment Analysis Methodology for Supplier Selection in the Presence of Fuzzy Undesirable Factors

Research Article Some Generalizations of Fixed Point Results for Multivalued Contraction Mappings

Research Article Solution of Fuzzy Matrix Equation System

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Equivalent Standard DEA Models to Provide Super-Efficiency Scores

NEGATIVE DATA IN DEA: A SIMPLE PROPORTIONAL DISTANCE FUNCTION APPROACH. Kristiaan Kerstens*, Ignace Van de Woestyne**

A Slacks-base Measure of Super-efficiency for Dea with Negative Data

A DIMENSIONAL DECOMPOSITION APPROACH TO IDENTIFYING EFFICIENT UNITS IN LARGE-SCALE DEA MODELS

Research Article On New Wilker-Type Inequalities

Research Article Batch Scheduling on Two-Machine Flowshop with Machine-Dependent Setup Times

Research Article Improved Estimators of the Mean of a Normal Distribution with a Known Coefficient of Variation

A Fuzzy Data Envelopment Analysis Approach based on Parametric Programming

Research Article Multiple-Decision Procedures for Testing the Homogeneity of Mean for k Exponential Distributions

Research Article Approximation Algorithm for a System of Pantograph Equations

Research Article Identifying a Global Optimizer with Filled Function for Nonlinear Integer Programming

AN IMPROVED APPROACH FOR MEASUREMENT EFFICIENCY OF DEA AND ITS STABILITY USING LOCAL VARIATIONS

Research Article A Generalization of a Class of Matrices: Analytic Inverse and Determinant

PRIORITIZATION METHOD FOR FRONTIER DMUs: A DISTANCE-BASED APPROACH

Research Article Uniqueness Theorems on Difference Monomials of Entire Functions

Research Article r-costar Pair of Contravariant Functors

Author Copy. A modified super-efficiency DEA model for infeasibility. WD Cook 1,LLiang 2,YZha 2 and J Zhu 3

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations

Data Envelopment Analysis within Evaluation of the Efficiency of Firm Productivity

Research Article Convergence Theorems for Infinite Family of Multivalued Quasi-Nonexpansive Mappings in Uniformly Convex Banach Spaces

Research Article Translative Packing of Unit Squares into Squares

Research Article Parametric Evaluations of the Rogers-Ramanujan Continued Fraction

Data envelopment analysis

Research Article An Auxiliary Function Method for Global Minimization in Integer Programming

Research Article Some New Fixed-Point Theorems for a (ψ, φ)-pair Meir-Keeler-Type Set-Valued Contraction Map in Complete Metric Spaces

Indian Institute of Management Calcutta. Working Paper Series. WPS No. 787 September 2016

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis

Research Article Remarks on Asymptotic Centers and Fixed Points

Research Article Technical Note on Q, r, L Inventory Model with Defective Items

Research Article An Inverse Eigenvalue Problem for Jacobi Matrices

Research Article The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem

Research Article New Partition Theoretic Interpretations of Rogers-Ramanujan Identities

CHAPTER 3 THE METHOD OF DEA, DDF AND MLPI

Sensitivity and Stability Radius in Data Envelopment Analysis

Research Article An Optimization Model of the Single-Leg Air Cargo Space Control Based on Markov Decision Process

Chance Constrained Data Envelopment Analysis The Productive Efficiency of Units with Stochastic Outputs

Research Article Global Attractivity of a Higher-Order Difference Equation

Research Article Strong Convergence of Parallel Iterative Algorithm with Mean Errors for Two Finite Families of Ćirić Quasi-Contractive Operators

Research Article Adaptive Control of Chaos in Chua s Circuit

Research Article Global Existence and Boundedness of Solutions to a Second-Order Nonlinear Differential System

Research Article Opinion Impact Models and Opinion Consensus Methods in Ad Hoc Tactical Social Networks

Symmetric Error Structure in Stochastic DEA

Research Article A Partial Backlogging Inventory Model for Deteriorating Items with Fluctuating Selling Price and Purchasing Cost

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems

Research Article Extended Precise Large Deviations of Random Sums in the Presence of END Structure and Consistent Variation

Research Article Cocompact Open Sets and Continuity

Novel Models for Obtaining the Closest Weak and Strong Efficient Projections in Data Envelopment Analysis

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method

Research Article On Decomposable Measures Induced by Metrics

Further discussion on linear production functions and DEA

Chapter 2 Network DEA Pitfalls: Divisional Efficiency and Frontier Projection

INEFFICIENCY EVALUATION WITH AN ADDITIVE DEA MODEL UNDER IMPRECISE DATA, AN APPLICATION ON IAUK DEPARTMENTS

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Research Article Strong Convergence of a Projected Gradient Method

Research Article Modified T-F Function Method for Finding Global Minimizer on Unconstrained Optimization

Research Article The Entanglement of Independent Quantum Systems

Research Article A Necessary Characteristic Equation of Diffusion Processes Having Gaussian Marginals

Research Article New Examples of Einstein Metrics in Dimension Four

ABSTRACT INTRODUCTION

EFFICIENCY ANALYSIS UNDER CONSIDERATION OF SATISFICING LEVELS

Research Article Fuzzy Parameterized Soft Expert Set

Research Article New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive and Negative Coefficients

A DEA- COMPROMISE PROGRAMMING MODEL FOR COMPREHENSIVE RANKING

Research Article Powering Multiparameter Homotopy-Based Simulation with a Fast Path-Following Technique

Research Article A Third-Order Differential Equation and Starlikeness of a Double Integral Operator

Research Article A New Class of Meromorphically Analytic Functions with Applications to the Generalized Hypergeometric Functions

Research Article Unicity of Entire Functions concerning Shifts and Difference Operators

Research Article Solving the Matrix Nearness Problem in the Maximum Norm by Applying a Projection and Contraction Method

Research Article Fixed Points and Generalized Hyers-Ulam Stability

A METHOD FOR SOLVING 0-1 MULTIPLE OBJECTIVE LINEAR PROGRAMMING PROBLEM USING DEA

Research Article On the Modified q-bernoulli Numbers of Higher Order with Weight

A Data Envelopment Analysis Based Approach for Target Setting and Resource Allocation: Application in Gas Companies

Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance

Transcription:

Advances in Decision Sciences Volume 2011, Article ID 608324, 8 pages doi:10.1155/2011/608324 Research Article A Data Envelopment Analysis Approach to Supply Chain Efficiency Alireza Amirteimoori and Leila Khoshandam Department of Applied Mathematics, Islamic Azad University, Rasht 41648-13955, Iran Correspondence should be addressed to Alireza Amirteimoori, aamirteimoori@gmail.com Received 18 August 2011; Accepted 7 December 2011 Academic Editor: Stefanka Chukova Copyright q 2011 A. Amirteimoori and L. Khoshandam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Supply chain management is an important competitive strategies used by modern enterprises. Effective design and management of supply chains assists in the production and delivery of a variety of products at low costs, high quality, and short lead times. Recently, data envelopment analysis DEA has been extended to examine the efficiency of supply chain operations. Due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs, as in the standard DEA approach, does not necessarily yield a frontier projection. The current paper develops a DEA model for measuring the performance of suppliers and manufacturers in supply chain operations. Additive efficiency decomposition for suppliers and manufacturers in supply chain operations is proposed. 1. Introduction Data envelopment analysis DEA, originated from the work of Charnes et al. 1, isa linear programming, nonparametric technique used to measure the relative efficiency of peer decision making units with multiple inputs and outputs. This methodology has been applied in a wide range of applications over the last three decades, in setting that include banks, hospitals, and maintenance. See for instances Amirteimoori and Emrouznejad 2, Amirteimoori and Kordrostami 3, Amirteimoori 4, and Cooper et al. 5. Recently, a number of studies have looked at production processes that have two-stage network structure, as supply chain operations. Due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs, as in the standard DEA approach, does not necessarily yield a frontier projection. Many researchers have applied standard DEA models to measure the performance of supply chain members. See for instances, Weber and Desai 6, Eastonetal. 7, Talluri and Baker 8, Liang et al. 9, Chen et al. 10, and Chen 11.

2 Advances in Decision Sciences x j z j S j y j M j q j Figure 1: Supplier-manufacturer supply chain. Weber and Desai 6 employed DEA to construct an index of relative supplier performance. Färe and Grosskopf 12 developed a network DEA approach to model the general multistage processes. Easton et al. 7 suggested a DEA model to compare the purchasing efficiency of firms in the petroleum industry. Talluri and Baker 8 proposed a multiphase mathematical programming approach for effective supply chain design. Their methodology applies a combination of multicriteria efficiency models, based on game theory concepts, and linear and integer programming methods. Liang et al. 9 and Chen et al. 10 developed several DEA-based approaches for characterizing and measuring supply chain efficiency when intermediate measures are incorporated into the performance evaluation. Chen 11 proposed a structured methodology for supplier selection and evaluation in a supply chain, to help enterprises establish a systematic approach for selecting and evaluating potential suppliers in a supply chain. Feng et al. 13 defined two types of supply chain production possibility sets, which are proved to be equivalent to each other. Some of the above-mentioned studies treat the supply chain as a black-box and do not consider the intermediate measures. However, in all studies, the treatment to the intermediate measures is ambiguous. Moreover, some of the above-mentioned studies are not applicable in a more complex supply chain or a network structured case. If we treat the supply chain operation as a black-box, ignoring the intermediate measure may yield an efficient supply chain with inefficient supplier and/or manufacturer. In the proposed model in this paper, the intermediate measure is considered as a free variable, and it will be reduced to make the whole supply chain as efficient. The paper develops a DEA model for measuring the performance of suppliers and manufacturers in supply chain operations. Additive efficiency decomposition for suppliers and manufacturers in supply chain operations is proposed and the DEA frontier points for inefficient supply chain members are determined. The structure of this paper is the following. In Sections 2 and 3, the problem statement and axiomatic foundation are, respectively, presented. In Section 4, the proposed approach is presented. Section 5 applies the proposed model on a numerical example taken from Liang et al. 9. The last section summarizes and concludes. 2. Problem Statement Consider a two-stage supply chain, for example, supplier-manufacturer supply chain as shown in Figure 1. Suppose we have n homogeneous supply chain operations. Each supply chain observation is considered to be a DMU. It is assumed that each supplier S j in DMU j : j 1,...,n has m inputs x ij : i 1,...,m and s outputs y rj : r 1,...,s. These s outputs

Advances in Decision Sciences 3 can become the inputs to the manufacturer M j. The manufacturer M j has its own inputs z dj : d 1,...,D. The final outputs from manufacturer are q lj : l 1,...,L. 3. Axiomatic Foundation Let T S be the production possibility set of technology under consideration for the supplier S. We postulate the following: P1: Feasibility of Observed Data x j, y j T S for any j 1, 2,...,n. P2: Unbounded Ray x, y T S implies λ x, y T S for any λ 0. P3: Convexity Let x, y T S and x, y T S. Then, for any λ 0, 1,theunitλ x, y 1 λ x, y T S. P4: Free Disposability a x, y T S, x x and y y, implies x, y T S or b x, y T S, x x and y y, implies x, y T S. P5: Minimal Extrapolation For each T satisfying in the axioms P1 P4, we have T S T. Now, an Algebraic representation of the PPS of the technology T S, satisfying the axioms P1 P5, is given. Theorem 3.1. The PPS T S, which satisfies the axioms P1 P5, is defined as ( ) T S x, y : x λ j x j, y λ j y j or y λ j y j, λ j 0, j 1, 2,...,n. 3.1 Proof. The proof is clear. Also, let T M be the production possibility set of technology under consideration for the manufacturer M. Again, to determine the technology of the manufacturer M, we postulate the following:

4 Advances in Decision Sciences P 1: Feasibility of Observed Data y j, z j, q j T M for any j 1, 2,...,n. P 2: Unbounded Ray y, z, q T M implies λ y, z, q T M for any λ 0. P 3: Convexity Let y, z, q T M and y, z, q T M. Then, for any λ 0, 1 the unit λ y, z, q 1 λ y, z, q T M. P 4: Free Disposability or a y, z, q T M, y y, z z and q q, implies y, z, q T M b y, z, q T M, y y, z z and q q, implies y, z, q T M. P 5: Minimal Extrapolation For each T satisfying in the axioms P1 P4, we have T M T. Similarly, an Algebraic representation of the PPS of the technology T M, satisfying the axioms P 1 P 5, is given. Theorem 3.2. The PPS T M, which satisfies the axioms P 1 P 5, is defined as ( ) T M y, z, q : y λ j y j or y λ j y j, z λ j z j, q λ j q j, λ j 0, j 1, 2,...,n. 3.2 Proof. The proof is clear. In the definition of T M and T M, the intermediate measure y can increase or decrease. In the proposed model, this measure is simultaneously reduced for supplier and manufacturer to achieve a steady state. 4. The Proposed Model In applying the model described herein, attention is paid to additive model. Consider the assessment of DMU o supplier S o and manufacturer M o in additive form. In the assessment of supplier S o, the output measure y should be increased. On the other hand, this measure is considered as input to the manufacturer M o and it should be decreased. If we treat the supply chain operation as a black-box, ignoring the intermediate measure y may yield an efficient

Advances in Decision Sciences 5 supply chain with inefficient supplier and/or manufacturer. In the model we proposed, the intermediate measure y is considered as a free variable, and it will be reduced increased or decreased to make the overall system as efficient. Based on the comments made above, and taking in to account Theorems 3.1 and 3.2, the o-th supply chain s performance can be obtained as the optimal value of the following two models: e o Min s 1 s 2 s 3 s 4 s 5 s.t. λ j x j s 1 x o, λ j y j s 2 y o, μ j z j s 3 z o, μ j q j s 4 q o, λ j,μ j 0, j 1, 2,...,n, s 1,s 3,s 4 0, s 2 is unrestricted in sign. 4.1 Obviously, this problem is feasible and the optimal objective value to this problem is bounded. We, therefore, provide an alternative definition for supply chain efficiency as follows. Definition 4.1. Supplier o is said to be additive efficient if and only if s 1 s 2 0. Definition 4.2. Manufacturer o is said to be additive efficient if and only if s 2 s 3 s 4 0. Clearly, o-th supply chain is said to be overall efficient if and only if e o 0. For an inefficient supplier S o x o, y o, we have x o λ j x j s 1, y o λ j y j s 2. 4.2 On the other hand, for an inefficient manufacturer M o y o, z o, q o, we have y o μ j y j s 2, z o q o μ j z j s 3, μ j q j s 4. 4.3

6 Advances in Decision Sciences Table 1: Data set. j x 1 x 2 x 3 y 1 y 2 z 1 q 1 q 2 1 9 50 1 20 10 8 100 25 2 10 40 4 10 15 10 80 10 3 9 30 3 8 20 8 96 30 4 8 25 1 20 20 10 80 20 5 10 40 5 15 20 15 85 15 6 7 35 2 35 10 5 90 35 7 7 30 3 10 25 10 100 30 8 12 40 4 20 25 8 120 10 9 9 25 2 10 10 15 110 15 10 10 50 1 20 15 10 80 20 Table 2: Efficiency of suppliers and manufacturers. j Overall efficiency θ 1 θ 2 1 35.8679 32.7547 3.1132 2 67.1818 11.7273 55.4545 3 11.9808 10.9423 1.0385 4 67.1818 6.7273 60.4545 5 102.7632 0 102.7632 6 0 0 0 7 32.7171 10.25 22.4671 8 33.28 5.28 28 9 22.5 0 22.5 10 84.1818 28.7273 55.4545 The supplier S o and manufacturer M o can be improved and become efficient by deleting the input excess and augmenting the output shortfalls. We point out that the intermediate measure y o may be increased or decreased to make the overall system as efficient. These operations are called supply chain projection. 5. Numerical Example To illustrate the proposed approach consider a simple example involving ten supply chains taken from Liang et al. 9. The suppliers use three inputs x 1, x 2,andx 3 to produce two outputs y 1, y 2. On the other hand, the manufacturer uses y 1, y 2,andz 1 to generate two outputs q 1 and q 2. The data are summarized in Table 1. The results from model 1 are listed in Table 2. As the table indicates, only one supply chain, 6, is efficient in aggregate sense. Clearly, a DMU may be efficient in supplier or manufacturer only, such as in the case for members 5 and 9. The projection points are listed in Table 3. The interpretation of our model can be illustrated by considering a specific supply chain, say supply chain 1. Both, the supplier and manufacturer in this supply chain are inefficient. The projection point to this supply chain is ( x1, x 2, x 3, y 1, y 2, z 1, q 1, q 2 ) 6.19, 19.34, 0.77, 24.53, 4.53, 8, 100, 29.06. 5.1

Advances in Decision Sciences 7 Table 3: Projection points. j x 1 x 2 x 3 y 1 y 2 z 1 q 1 q 2 1 6.19 19.34 0.77 24.53 4.53 8 100 29.06 2 7.28 22.73 0.91 1.82 11.82 10 122.73 34.10 3 6.38 19.95 0.80 0.04 24.04 8 100.96 30 4 7.27 22.73 0.91 21.82 21.82 10 122.73 34.10 5 9.73 30.41 1.22 5.68 15.68 15 171.44 44.97 6 7 35 2 35 10 5 90 35 7 7 21.88 0.87 2.5 32.5 10 119.80 32.66 8 8.88 35.1 1.74 8 32 8 120 43 9 6.05 18.92 0.76 4.86 4.87 15 132.03 25.74 10 7.27 22.73 0.91 21.82 11.82 10 122.73 34.09 It is to be noted that the first intermediate measure should be increased from 20 to 24.53, whereas the second one should be decreased from 10 to 4.53. These reductions make the supply chain as efficient. We used GAMS software on a Pentium 4, 512 Mbytes RAM, 2 GHz PC. 6. Conclusions A supply chain s performance can be overestimated if we treat the supply chain operation as a black box. Moreover, due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs, as in the standard DEA approach, does not necessarily yield to a frontier projection. The current paper introduced the technologies used in supply chain operations. A method for determining the DEA frontier points for inefficient supplier and manufacturers in supply chain operations has been shown. The paper developed a DEA model for measuring the performance of suppliers and manufacturers in supply chain operations. References 1 A.Charnes,W.W.Cooper,andE.Rhodes, Measuringtheefficiency of decision making units, European Operational Research, vol. 2, no. 6, pp. 429 444, 1978. 2 A. Amirteimoori and A. Emrouznejad, Flexible measures in production process: a DEA-based approach, RAIRO Operations Research, vol. 45, no. 1, pp. 63 74, 2011. 3 A. Amirteimoori and S. Kordrostami, Production planning: a DEA-based approach, International Advanced Manufacturing Technology, vol. 56, no. 1 4, pp. 369 376, 2011. 4 A. Amirteimoori, An extended transportation problem: a DEA-based approach, Central European Operations Research, vol. 19, no. 4, pp. 513 521, 2011. 5 W. W. Cooper, L. M. Seiford, and J. Zhu, Handbook of Data Envelopment Analysis, Kluwer Academic Publishers, Norwell, Mass, USA, 2007. 6 C. A. Weber and A. Desai, Determination of paths to vendor market efficiency using parallel coordinates representation: a negotiation tool for buyers, European Operational Research, vol. 90, no. 1, pp. 142 155, 1996. 7 L. Easton, D. J. Murphy, and J. N. Pearson, Purchasing performance evaluation: with data envelopment analysis, European Purchasing and Supply Management, vol. 8, no. 3, pp. 123 134, 2002. 8 S. Talluri and R. C. Baker, A multi-phase mathematical programming approach for effective supply chain design, European Operational Research, vol. 141, no. 3, pp. 544 558, 2002.

8 Advances in Decision Sciences 9 L. Liang, F. Yang, W. D. Cook, and J. Zhu, DEA models for supply chain efficiency evaluation, Annals of Operations Research, vol. 145, pp. 35 49, 2006. 10 Y. Chen, L. Liang, and F. Yang, A DEA game model approach to supply chain efficiency, Annals of Operations Research, vol. 145, pp. 5 13, 2006. 11 Y. J. Chen, Structured methodology for supplier selection and evaluation in a supply chain, Information Sciences, vol. 181, no. 9, pp. 1651 1670, 2011. 12 R. Färe and S. Grosskopf, Network DEA, Socio-Economic Planning Sciences, vol. 34, no. 1, pp. 35 49, 2000. 13 Y. Feng, D. Wu, L. Liang, G. Bi, and D. D. Wu, Supply chain DEA: production possibility set and performance evaluation model, Annals of Operations Research, vol. 185, no. 1, pp. 195 211, 2011.

Advances in Operations Research Advances in Decision Sciences Mathematical Problems in Engineering Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Stochastic Analysis Abstract and Applied Analysis International Mathematics Discrete Dynamics in Nature and Society Discrete Mathematics Applied Mathematics Function Spaces Optimization