EFFECT OF THE DIAMETER OF THE LONG-PULSE TUBE ON THE PULSATOR CURVE. M.A. v.d. Brandt and W. Rossing

Similar documents
~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

A L A BA M A L A W R E V IE W

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance

P a g e 5 1 of R e p o r t P B 4 / 0 9

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Chapter 9 Compressible Flow 667

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk"

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

APPH 4200 Physics of Fluids

ss Cemetery Holy CARBOLIC Owned and operated by

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Use a lens holder fabricated from SiC. SiC has a larger CTE than C-C, i.e. it is better matched to the SFL6.

MASSACHUSETTS Election Statistics

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

Tausend Und Eine Nacht

Chapter 5: Diffusion (2)

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

IIOCTAHOBJIEHILN. 3AKOHOITATEJIbHOEc oe pahiie riejtfl Br,rHc Kofr on[q.c ru ]s. llpe4ce4arenr 3 arono4are,rbuoro Co6paurax B.B.

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~ " ^ o ^ * n 9 C"r * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O.

4F-5 : Performance of an Ideal Gas Cycle 10 pts

N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r n h r d r

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

Lecture10: Plasma Physics 1. APPH E6101x Columbia University

,. *â â > V>V. â ND * 828.

MIL-HDBK OCTOBER 1984 MAINTAINABILITY ANALYSIS

Physics 2010 Motion with Constant Acceleration Experiment 1

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

Chapter 4. Unsteady State Conduction

Copyright Paul Tobin 63

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

CHAPTER PRACTICE PROBLEMS CHEMISTRY

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s)

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

q-..1 c.. 6' .-t i.] ]J rl trn (dl q-..1 Orr --l o(n ._t lr< +J(n tj o CB OQ ._t --l (-) lre "_1 otr o Ctq c,) ..1 .lj '--1 .IJ C] O.u tr_..

SOLUTION SET. Chapter 8 LASER OSCILLATION ABOVE THRESHOLD "LASER FUNDAMENTALS" Second Edition

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

Department of Electrical Engineering, University of Waterloo. Introduction

Exponential Functions, Growth and Decay

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

& Ö IN 4> * o»'s S <«

(Communicated at the meeting of January )

SGP - TR - 30 PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING. Editors. December13-15, , 1978 SGP - TR - 30 CONF

Best Available. Copy

Vr Vr

necessita d'interrogare il cielo

Short notes for Heat transfer

Higher Mathematics Booklet CONTENTS

FOR TESTING THill POWER PLANT STANLEY STEAM AUTOMOBILE SOME TESTS MADE WITH IT. A Thesis surmitted to the

T h e C S E T I P r o j e c t

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

BASIC DIRECT-CURRENT MEASUREMENTS

.Sua. 8f fc"g. II f 8. *1 w. a -a M +» * <N H Q. o * H CO. * o M < a «* n 55 ti 55 «55 «55 Pi. u < < M C C * Ztf fc tf fctf tf tf ISO.

Math 105: Review for Exam I - Solutions

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Thermodynamics and Equilibrium

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering:

NAME TEMPERATURE AND HUMIDITY. I. Introduction

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pledged_----=-+ ---'l\...--m~\r----

Colby College Catalogue

The standards are taught in the following sequence.

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects

Accelerated Chemistry POGIL: Half-life

CITY OF LOS ANGELES INTER-DEPARTMENTAL CORRESPONDENCE

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Sub: Submission of the copy of Investor presentation under regulation 30 of SEBI (Listing Obligations & Disclosure Reguirements) Regulations

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

" 1 = # $H vap. Chapter 3 Problems

4. Find a, b, and c. 6. Find x and y.

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot


Beginning and Ending Cash and Investment Balances for the month of January 2016

Coupled Inductors and Transformers

VARIETIES OF COTTON. Xo. OS and 1906 AGRICULTURAL COLLEGE, BTLTT.I.1^7IM>r. Mississippi Agricultural Experiment Station. By W R. PERKINS. MISS.

Cambridge Assessment International Education Cambridge Ordinary Level. Published

General Chemistry II, Unit I: Study Guide (part I)

EXAM #1 PHYSICAL SCIENCE 103 Spring, 2016

Math 0310 Final Exam Review Problems

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

Drought damaged area

In the OLG model, agents live for two periods. they work and divide their labour income between consumption and

Chemistry/ Biotechnology Reference Sheets

Surface and Contact Stress

Math 9 Year End Review Package. (b) = (a) Side length = 15.5 cm ( area ) (b) Perimeter = 4xside = 62 m

Transcription:

EFFECT F TE DIAMETER F TE LNG-PULSE TUBE N TE PULSATR CURVE M.A. v.d. Brandt and W. Rssing INTRDUCTIN Different makes f milking machines use lng-pulse tubes with varius inside diameters. At the request f the IS Technical Cmmittee 23/SC ll/wgv2 "Milking Machine Installatin", we examined the effect f the diameter f the lng-pulse tube n the pulsatr curve. The measurements were carried ut in a labratry n an artificial udder with bth pipeline and bucket installatins. TERETICAL Theretically we can sider the vacuum variatin in the pulsatin chamber as fllws: Increasing vacuum phase P R i i R x- P2 c P = vacuum in vacuum line PI = vacuum in pulsatr P2 = vacuum between teat cup and liner Rl = resistance f tube between vacuum line and pulsatr R2 = resistance f pulsatr and pulse tube C = capacity f rm between teat cup and liner + capacity f pulse tubes. * Student f the Technical igh Schl at Zwlle ** Institute f Agricultural Engineering

T ensure that there wuld be n variatin in P, we used a vacuum pump with a large capacity. We can make the fllwing equatins: 0 = Pl-P Rl P2-P1 R2 dp2 -C dt (1) (Pl--P)R2 = (P2-P1)R1 r P2 Rl R1+R2 + R2 R1+R2 PI... (2) P2 - PI = dp2 -CR2 dt (3) Substitude (2) in (3), dp2 P2 = P - C(R1 + R2)... (4) dt If we accept that the sliding valve f the pulsatr pens in a very shrt time, then P changes as a step functin -t_ P2 = P(l - e T )... (5) This frmula shws that the time it takes fr P2 t reach the value f P depends n the resistance Rl and R2 and the capacity C. DECREASING VACUUM PASE The air under atmspheric pressure can flw a the pulsatr and the pulse tubes in the space between the teat cup and the liner. Pb x- p2^

Pb = atmspheric pressure 0 = Pb - P2 R2 dp2 dt... (6) P2 = Pb - CR2 dp2 dt (7) This frmula shws that the time taken fr P2 t reach the atmspheric pressure Pb depends n the resistance R2 and the capacity C. MEASUREMENTS Fr the measurements the fllwing variables were intrduced. MILKING PIPELINE MACINE Pulsatr A B C D E Alternative pi IT Simultaneus it Pulse tube diameter 6 mm 7 mm 8 mm 9 mm, all 2400 mm lng Capacity teat cup large small

We can cmbine the variables as fllws: A 6 small 7 small 8 small 9 small 6 large 7 large 8 large 9 large B 6 small 7 small 8 small 9 small 6 large 7 large 8 large 9 large 6 small 7 small 8 small 9 small 6 large 7 large 8 large 9 large D 6 small 7 small 8 small 9 small 6 large 7 large 8 large 9 large E This pulsatr is placed n the claw s that n lng-pulse tubes can be used E large E small E withut teat cups BUCKET MILKING MACINE Pulsatr Pulse tubes alternative pulsatin simultaneus pulsatin Capacity diameters 6 mm, 920 mm lng 7 mm, " " teat cups: large small We can cmbine the variables as fllws: A B C D 6 small 7 small 6 small 7 small 6 small 7 small 6 small 7 small 6 large 7 large 6 large 7 large 6 large 7 large 6 large 7 large

During the measurements the teat cups were nected t an artificial udder. The pressure variatin was measured with pressure transducers and recrded with a recrder which had a satisfactry frequency respnse (0-100 z). The air sumptin was measured with a gas vlume meter (Drawings 1 and 2). The results f the measurements are presented in Tables 1, 2 and 3 and in the Figs. 1-50. Frm the graphs the fllwing data can be btained: ttal pulsatin cycle a. increasing vacuum phase b. maximum vacuum phase c. decreasing vacuum phase d. minimum vacuum phase 50 kpa Pulsatin cycle kpa

These data are expressed in % f the ttal pulsatin cycle (tables 1, 2 and 3). These tables als shw the pulsatr rate, air sumptin in litres f expanded air per min, and the air sumptin in 1 expanded air per 60 cycles. CAPACITY C The capacity f the installatin: - capacity f space between teat cup and liner (4 x by simultaneus and 2 x by alternative) - capacity f lng pulse tube - capacity f shrt pulse tubes (4 x by simultaneus and 2 x by alternative pulsatin). The capacity f the pulsatin chamber was measured by puring water int the chamber with a vacuum inside the liner. Capacity f small teat cup: 105 cm 3 (by alternative) 135 cm 3 (by simultaneus) Capacity f large teat cup: 165 cm 3 Capacity f pulse tubes diameter 1 = 2400 mm 1 = 920 mm 1 = 25 mm 6 mm 7 mm 8 mm 9 mm 67.0 cm 3 92.4 cm 3 120.6 cm 3 152.9 cm 3 26 cm 3 35.4 cm 3 4.2 cm 3 Ttal capacity and teat cups in litres with different tube diameters, pulsatr s

Milking pipeline machine diameter f pulse tube small alt. small sim. large alt. large sim. 6 mm 7 mm 8 mm 9 mm 0.29 0.31 0.34 0.37 0.62 0.65 0.68 0.71 0.41 0.43 0.46 0.49 0.74 0.77 0.88 0.83 Bucket milkin ç machine diameter f pulse tube small alt. small sim. large alt. large sim. 6 mm 7 mm 0.24 0.25 0.58 0.59 0.36 0.37 0.70 0.71 We can clude that the teat cups have mre influence n the ttal capacity than the diameter f the pulse tubes.

G,C IT) S 0) G \ 01 l r P. M G ^ S v a) /3 ni M r G G \ 'r g 1 a e p 1 m r G 3 -, +J dp v X - 1 T3 0 l-m <*P X -" 0 I-p dp X l-p <#> X (ti 0 l-m dp v X + 0 S 3 ' -> -a m a, 0) 3 u 1 0 +-> 3 id P. m w a) r >i a G 0)0 'r «- c t 0 0) IÖ u g 0) p. >, 4-> 00 CN C r cr> r < C C tû CN C L C v C L 1 C L L C c r C r c L C r~\ T-t C L c T-l C C C cp L C T C C (0 L L L L c v C C rf c C CT> L C v v C L C C C C ^x L C r C C Jd- =t c C v v C L r~ v C C < C rj- C C v C C C zj- J r C L C v C r» C CT) C c C r L L L L C C r r C C C C =t Jc j- t C C r r r v-i E-- <-0 r~\ r L L r r c C C C QJ u CT) C L C C L r r L C C C C Zf r L C C v CT) L L ^\ L C r v [-» J" L C C CT) C C st c r r L C [> r r - L L r L L r ^-\ C-- -d" L C C i C C C r r r f- C i td C r C L \-\ L r v-i j- L C C r L <\ =t C r ^i C L L CQ C r r~~ C C L L ^t c C C L L L =t ^ - C C C C r r L c L L L C C r L L L r C C C C r r CP r~- c L C C r L C =t cu cuj u cd C r L C C r r C L C C L

-9- a r ni e a r r dl ft ft M C r 0),a rö hfl r Pu 10 \ 0) r r r CJ e 1 ai (U g r 14 3 ' >, <D - 0 ft -> c 1 C r +J 3 - rd ft +> fn dp -> v 13 l+j X dp l+j X dp I-P v /a l+j X dp l+j v rti 0 I-P X dp jal+j V + 0 ifl +J X ) 6 ja ) 3 - g +J T3 E (11 ft a> 3 +J u 1 <D r +J ft 3 rfl >, ft +J v c d- d- c CsJ ^ CX) *-\ c c c D ^ [^ ' C v C C C C rf tû v C L CT) L L C C [-- ~ C C C v C L c [-- CÛ r C c v C v L "- c r al c C 00 C C [-- v C C T L L L C v C t-^ L C C- C zj- v C v zj- L c c C-- CÛ 7t c- c- zx L C v v c CÛ v C r r C C C- C zf L C L C v zf L c C c (1) hn tl rd n- c c c c c C"- ^ L C C v L c v t' en L C L c c - ~ L L L L L L L _j. C c c [-- CJD c L c- L L L L L v C C c L C r m c c L v C c C L ç C C L T L L L zien f- zien r L =1 C L L L L L zien C C v v L [ " C t> 00 L en zï zf C-- c L 0) bü U C L < v c L c L L zj- C L L c c rd C c l L c - L C c L QJ bü U m C L L L C"» L C-- 1 0) G 0

-1 0- b L C (X) C c c c D c j- c j- L c c L in 1/ 60 cycles L L C L CT) L C-» c c c c c c UD 00 c c L L L - l C L L c LD L - c L c \ - L L L L c L-~ C L L c j- LD LD LD L L LD LD L LD L L L ri 00 =t L time f pulsatin cycle, sec - V Zf en en C"- - L pulsatr rate L L L L c-» L L - L L LD J" L Cû C =r L C L L l- v l-p X [-- L L en C C. C C en c c C L en c C C C C c c c c l- - X L Zt C C zr c C en C C L en c c C C dp P Xi - X C C L L L L L L L J=f L L en C L L L J" LD L L L [>- CÛ LD t' en C Ü n) M C l- m - X a+b tt x 100% C C C v C C C - t~ r~- LD cû en LD L c J3- en L L L L LD C C L c r~~ L L 00 C C C c~~ [> v C C- t> t"^ v c C~~ L C c C L L e p a) >! D «tube diam. mm teat cup f- t-t S C c r r r C b fd 1 f L C t^~ CÛ F- a) b r L r^ -M r L - CTJ b U C X3 i v C -P < CQ c J Q

CNCLUSINS The values f (a) and (c) are affected by the resistance in the system and the capacity f this system (this is als shwn by the frmulas). Althugh we d nt knw the effect f these factrs n the milking, we assume that the effect f the diameter f the pulse tubes must be small. Frm the tables the effect f the capacity seems fairly great cmpared with that f the tube diameter. Fr a pipeline milking machine with an alternative pulsatr and teat cups f nt t large capacity, a lng-pulse tube with a diameter f 6 mm is sufficient: with teat cups f a larger capacity this diameter slightly lengthens the increasing and decreasing vacuum phase s that a tube with an inside diameter f 7 mm gives a better result. With a simultaneus pulsatr it is clear that an inside diameter f 6 mm is t small and the diameter must be at least 7 mm. Fr a bucket milking machine with an alternative pulsatr and a pulse tube 920 mm lng, a diameter f 6 mm is sufficient. Fr a simultaneus pulsatr a pulse tube with an inside diameter f 7 mm gives better results.

vacuum trller vacuum- J C J * * -jzh4 gasmeter mercury gauge clawartificial teat ilk tube I pulse tube- ^12- pressure transducer ' teat cup 1 = 920 c r -pulsatr bucket 1 recrder Drawing 1 Diagram f the labratry installatin fr measuring the pressure drp in the lng-pulse tube by bucket installatins.

vacuum trller vacuum pulsat *! * 1 Z) C 7 Agasmeter mercury gauge pulse tube, -,= I = 2400 artificial teat ^17- teat cup pressure transducer milk tube I -claw recrder Drawing 2 Diagram f the labratry installatin fr measuring the pressure drp in the lng-pulse tube by pipeline installatins.

Fig. 1-50 shw the pressure variatins in the different situatins between teatcup and liner. ssssss :::: asss :ui :SI [rj ;:. wax ::.is»«' ' ::!::; is :i ss! :: :'.:: ; Ë li 1?! SI! SS! is sssi is.fi i" :sj is irai!: 'j.,' fig. 1 fig. 2 II Ulli III «fll. 3 '1 Ill 1 ftj II I']!] IIEIIIIIIIIII tit Uff^l'"! - Cm m Il IIII II! h 11 j 1 ^1 i ] mi ni j Fa' IT fig. 4 fig. 5 fig. 6 fig. 7 fig. 8 fig. 9

fig. 12 lllj ji;fl j j [ ij j g: l1-13 fig. fig. 15 Up WMm [IBl ill till' I I 111 il ii lllllllllllllllilfflii iliftiii ll I 111 III fig.16 fig. 17 fig. 18 1J

fig. 19 fig. 20 fig. 21 fig. 22 fig. 23 fig.24 fv 'a' i-: :\ iliiij. i f/g. 25 ffy.2ff «g.27

fig. 28 fig 29 fig. 30 m i Ë IC' ^-fflli Uli llltliititllt^^b w IM II!! ih : i II' ff! M 1! i!: \\\r< ffi V 1 1! i il ilniiiiiii i i ilelllllllilil 111 'I tr.t : -; fig. 31 f ig. 3 2 fig. 33 fig. 34 a fig. 35

fig. 42 f ig. 43 fig. 44

fig. 45 fig. 46 fig. 47 fig. 48 fig. 49 fig. 50