Physics 53. Dynamics 2. For every complex problem there is one solution that is simple, neat and wrong. H.L. Mencken

Similar documents
3) Uniform circular motion: to further understand acceleration in polar coordinates

Periodic Motion. Circular Motion, Gravity, Simple Harmonic Motion

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Dynamics: Forces and Newton s Laws of Motion

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Experiment #7 Centripetal Force Pre-lab Questions Hints

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Centripetal force keeps an Rotation and Revolution

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects.

Chapter 8. Dynamics II: Motion in a Plane

II. Universal Gravitation - Newton 4th Law

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 6: Work, Energy and Power Tuesday February 10 th

Chapter 5. The Laws of Motion

Saint Lucie County Science Scope and Sequence

AP PHYSICS 1 Learning Objectives Arranged Topically

Chapter 5 Circular Motion; Gravitation

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Chapter 8: Dynamics in a plane

Chapter 5 Circular Motion; Gravitation

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Non-inertial systems - Pseudo Forces

Dynamics: Forces and Newton s Laws of Motion

Force and Acceleration Lecture 4

Chapter 5. The Laws of Motion

Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2

Midterm Grades Midterm HW and MidtermGrades in ecampus. Check clicker grades Check HW (WebAssign) grade HW and Reading Assignments

BIT1002 Newton's Laws. By the end of this you should understand

Newton s Laws of Motion

An object moving in a circle with radius at speed is said to be undergoing.

Chapter 5 Lecture Notes

5. Forces and Free-Body Diagrams

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

Centripetal force, weight, stress and the Earth's equatorial bulge. Centripetal Force. by Donald E. Simanek

ASTRONAUT PUSHES SPACECRAFT

Lecture 7. Forces: Newton s Laws. Problem-Solving Tactics: Friction and Centripetal Motion. Physics 105; Summer How do we jump?

Circular Motion. Gravitation

P - f = m a x. Now, if the box is already moving, for the frictional force, we use

Circular Motion Dynamics Concept Questions

12/1/2014. Chapter 5 Circular Motion; Gravitation. Contents of Chapter 5. Contents of Chapter Kinematics of Uniform Circular Motion

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli

Dynamics: Forces. Lecture 7. Chapter 5. Course website:

Chapter 5. The Laws of Motion

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods.

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion

Force in Nature. <

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

Extension of Circular Motion & Newton s Laws. Chapter 6 Mrs. Warren Kings High School

Everyday Forces. MCHS Honors Physics Weight. Weight

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Chapter 5. The Laws of Motion

24/06/13 Forces ( F.Robilliard) 1

ESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws

Physics 2211 M Quiz #2 Solutions Summer 2017

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Chapter 5 Force and Motion

Mechanics Lecture Notes

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

Chapter 1. Basic Concepts. 1.1 Trajectories

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact?

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Chapter 6: Systems in Motion

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES

Welcome back to Physics 211

AP PHYSICS 1 Content Outline arranged TOPICALLY

Circular Motion and Gravity Lecture 5

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

FORCE. The 4 Fundamental Forces of Nature

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Circular Motion and Gravitation Practice Test Provincial Questions

Gravity. Gravity and Newton. What really happened? The history of Gravity 3/9/15. Sir Isaac Newton theorized the Law of Gravitation in 1687

Lecture 10. Example: Friction and Motion

Dynamics Test K/U 28 T/I 16 C 26 A 30

Physics 100: Lecture 4b Chapter 4

Practice Test for Midterm Exam

Work Done by a Constant Force

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Algebra Based Physics Uniform Circular Motion

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Physics for Scientists and Engineers 4th Edition, 2017

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYSICS 231 Laws of motion PHY 231

Physics 12 Unit 2: Vector Dynamics

Transcription:

Physics 53 Dynamics 2 For every complex problem there is one solution that is simple, neat and wrong. H.L. Mencken Force laws for macroscopic objects Newton s program mandates studying nature in order to discover general laws of force. Newton showed how powerfully successful this could be when he found the Law of Universal Gravitation, which we will discuss later. Classical physics describes objects we can observe using our senses directly. These are often called macroscopic objects. Since the 19 th century we have learned that the truly fundamental force laws refer to interactions in the microscopic world of atoms, nuclei and sub-nuclear particles. Behavior of an everyday object is the average or net effect of a very large number ( 10 23 ) of interactions of these microscopic particles. Because the number of particles is so large, the statistical fluctuations of the average behavior are extremely small, so classical physics gives very reliable results. Except for gravity, all of the forces we experience directly through our senses are in fact electromagnetic at the microscopic level. The details of electromagnetism will be studied in the next course. Here we deal with everyday forces which are macroscopic effects of microscopic electromagnetic interactions. Catalog of force laws Here is a catalog of force laws used in applications of Newton s laws: Name Symbol Formula Notes Gravity (weight) F g, W F g = mg Near earth s surface g is toward the center with magnitude g 9.80 m/s 2 Physics 53 1 Dynamics 2

Normal force F N, N Tension F T, T Compression F N, N Elastic force F k F k = kx This is a repulsion between atoms at the interface between two objects, to prevent interpenetration. It is normal (perpendicular) to the interface surface. In our applications its strength is as much as needed, and deformation of the surfaces is neglected. A pull on an object attached to the end of a string or rod. It is away from the end and toward the center of the string or rod. The strength is as much as needed, up to the point of breaking or significant deformation. A push exerted by a solid object, basically like a normal force. The direction is away from the center of the solid object. Normal forces, tensions and compressions do not act at a single point, but are distributed over the contact surface, in the form of stresses. Hooke's law. Applies approximately to springs and other elastic systems. Here k is the stiffness constant and x is the amount of deformation. The negative sign shows that the force exerted by an elastic system is directed opposite to its deformation. Acts between surfaces to prevent sliding, when sliding is not actually occurring. Here µ s is the coefficient of Static friction f s f s µ s N static friction (usually less than 1) and N is the magnitude of the normal force at the interface. The direction is along the interface, opposite to the direction in which sliding would occur if there were no friction. Its magnitude can be anything from zero to the limit given. Physics 53 2 Dynamics 2

Acts when sliding does occur. Here µ k Kinetic friction f k f k = µ k N is the coefficient of kinetic friction ( < µ s ). The direction is along the interface, opposite to the direction of sliding. Forces in circular motion In our discussion of circular motion we found that there must be a radial acceleration toward the center of the circle, of magnitude exactly v 2 /R, where v is the particle's speed and R is the radius of the circular trajectory. By the 2nd law, there must be a net force to provide this acceleration. We call this the radial force. It can arise from any of the types listed in the catalog above, or a combination of them. In textbooks the radial force is sometimes called the centripetal force, because it produces the centripetal acceleration. We avoid these obsolete terms, because students tend to think centripetal denotes a new kind of force law, which it does not. The name, radial or centripetal, describes what the force does, rather than what kind of force it is. If a particle of mass m is moving with speed v in a circle of radius R, then there must be a radial component of the total force toward the center of the circle, given exactly by Radial force F r = ma r, where a r = mv 2 /R = mrω 2 If the radial component of the actual total force is larger or smaller than mv 2 /R, the particle will not follow a circle of radius R at speed v, but some other trajectory. The total force may also have a component tangent to the circle, which will give rise to a tangential acceleration, changing the particle's speed. What expression appears on the left side of this equation depends on what kind of force is providing the radial acceleration. It can be any of the ones listed in the table above. Non-inertial frames Newton's laws of motion apply as given so far only in inertial reference frames. It is always possible to use such frames for the analysis of a situation, but often it is more intuitive to use a reference frame that is accelerating. For example, to describe the motion of an object sliding across the seat of an auto going rapidly around a curve, one can use an inertial frame fixed on the ground, but it is often more intuitive to use a (non-inertial) Physics 53 3 Dynamics 2

frame fixed in the auto. Fortunately it is possible to use non-inertial frames in applying Newton s laws, with only a modest modification of the forces. In the earlier discussion of reference frames we found the formula for the acceleration of an object (P) as seen by two observers (A and B) in motion relative to each other: a P/A = a P/B + a B/A. Let A be in an inertial frame and let B s frame be accelerating. Then by the 2nd law, in A s frame F tot = ma P/A. Here F tot is the sum of the interaction forces exerted on P by its environment. These will be the same in B's frame, but the observed acceleration will be different, so the 2nd law will not hold in that frame. However, let us solve for ma in B's frame: ma P/B = m(a P/A a B/A ) = F tot ma B/A. This shows that if we add to the interaction forces the quantity ma B/A then we get an effective total force which does obey the 2nd law in B's frame. The quantity ma B/A is called an inertial force. It arises entirely from the acceleration of B s frame. Because they are artifacts of the use of a non-inertial frame, inertial forces are sometimes called fictitious forces or pseudoforces. The distinction between real and fictitious is not so clear, however. To introduce the inertial force is not just a trick. How does B determine experimentally what the total force on P is? By measuring the acceleration and using the 2nd law. To B the total force is the right side of the equation above, including the term ma B/A. To B the inertial force is quite real and observable. There are numerous examples where it is useful to view things from an accelerating frame, and in which inertial forces play an important role. Consider, for example, a reference frame fixed at a point on the earth s surface, e.g., in an ordinary laboratory. Such a reference frame rotates daily about the earth's axis and revolves annually about the sun; both of these motions involve acceleration, so this is not an inertial frame. Because the accelerations involved are quite small, we often assume such a frame fixed to the earth to be inertial as a good approximation. It would be very cumbersome to describe phenomena taking place on the earth from the point of view of some imaginary inertial frame at rest relative to the sun or to the center of the galaxy, or whatever. So we generally employ a non-inertial frame fixed on the earth s surface. Among the resulting inertial forces we might have to take into account in very accurate work on the earth s surface are the centrifugal force, tending to Physics 53 4 Dynamics 2

push objects away from the rotation axis of the earth, and the Coriolis force, acting at right angles to the velocity of a particle moving relative to the rotating reference frame. It is the Coriolis force that makes winds circulate clockwise around a high pressure area in the northern hemisphere, and the other way in the southern hemisphere. In meteorology it is very real indeed. Because inertial forces are proportional to the mass of the object, they can be combined with gravity (also proportional to the mass) to form an effective gravity. We separate gravity from the other forces acting on the particle and write F tot = F non grav + mg. Then the total force in B's frame (including the inertial force) will Be F tot (in B's frame) = F non grav + m(g a B/A ). We define the quantity in ( ) on the right to be the effective acceleration of gravity in B s frame. Using the simpler notation a 0 to represent the acceleration of B s frame relative to the (inertial) frame of A, we have a simple and very useful formula: Effective gravity g eff = g a 0 This formula is a vector equation. This means that g eff can differ from g in direction as well as magnitude. Some important aspects of effective gravity: The measured weight of an object is mg eff. This is often somewhat disparagingly called apparent weight; but it is the actual weight one finds by any valid measurement, such as by use of any kind of scale or balance. In a non-inertial frame, an object dropped from rest will fall in the direction of g eff, which therefore gives the direction of down in that frame. An object in free fall (on which the only force acting is gravity) will have acceleration g, so in a reference frame moving along with the object g eff = 0. Anything at rest in such a frame will have zero measured weight. Astronauts in orbit around the earth provide a well-known example of this weightlessness. We will make use of g eff in our discussion later of tides caused by the moon and sun. Physics 53 5 Dynamics 2