In-depth, 2 Credit Courses Descriptions

Similar documents
CHEM 105 Chemistry and Society (4) CHEM 115 Introductory Chemistry Topics 1 (0-1) CHEM 116 Introductory Chemistry Topics 2 (0-1)

CHEM 125B Introduction to Chemical Structure and Properties-Part 1 (2) CHEM 125C Introduction to Chemical Structure and Properties-Part 2 (2)

CHEMISTRY (CHEM) CHEM 5800 Principles Of Materials Chemistry. Tutorial in selected topics in materials chemistry. S/U grading only.

CHEMISTRY (CHEM) CHEM 1200 Problem Solving In General Chemistry

CHEMISTRY (CHE) CHE 104 General Descriptive Chemistry II 3


Chemistry (CHEM) Chemistry (CHEM) 1

CHEMISTRY (CHEM) Chemistry (CHEM) 1

Department of Chemistry and Biochemistry Approved Learning Outcomes Approved May 2017 at Departmental Retreat

Chemistry Courses -1

Savannah State University New Programs and Curriculum Committee Summary Page Form I

CHEMISTRY (CHEM) CHEM 825D Mass Spectrometry

CHEMISTRY (CHEM) CHEM 208. Introduction to Chemical Analysis II - SL

Chemistry. Faculty. Major Requirements for the Major in Chemistry

CHEMISTRY (CHEM) CHEM Fundamentals of Biochemistry

CHEMISTRY. Writing Requirement. Credit for Courses at the 100- and 200- Level. Introduction. Educational Objectives.

Chemistry. Faculty Kent Davis, chair; Pablo Hilario, Denise Lee-Haye, Marie Pak, Robert Wilson Departmental Office: 355 Chan Shun Hall; (707)

Topic 1: Stoichiometric relationships Introduction to the particulate nature of matter and chemical change. Topic 2: Atomic structure 6

CHEMISTRY (CHEMSTRY) Prereqs/Coreqs: P: math placement score of 15 or higher Typically Offered: Fall/Spring

CHEMISTRY (CHM) Chemistry (CHM) 1

COURSE DESCRIPTIONS CHEM 050 CHEM 101 CHEM 111 CHEM 112 CHEM 121 CHEM 253 CHEM 254 CHEM 275 CHEM 276 CHEM 277 CHEM 278 CHEM 299

CHEMISTRY MAJOR. Suggested Course Sequence. 2nd-Class Year

The Chemistry department approved by the American Chemical Society offers a Chemistry degree in the following concentrations:

COURSE DESCRIPTIONS. Vertically-related courses in this subject field are: Chem ;

CHEMISTRY (CHEM) 100 Level Courses. 200 Level Courses. Chemistry (CHEM) 1

CHEMISTRY (CHEM) Bachelor of Arts Major. Faculty. Chemistry (CHEM) 1

COURSE MASTER CATALOG

EASTERN OREGON UNIVERSITY Chemistry-Biochemistry

MASTER OF SCIENCE (M.S.) MAJOR IN BIOCHEMISTRY

CHM1001, 1002, 1051, <PHY1101, 1102, 1001, 1002> or <BIO1101, 1102, 1105, 1106> Total 16 cr.

Faculty: Andrew Carr, Ryan Felix, Stephanie Gould, James Hebda, Karla McCain, John Richardson, Lindsay Zack

Prerequisites: MATH 103 or a Math Placement Test score for MATH 104 or 106. Prerequisites: CHEM 109

CIM Report May 8, :01pm

Chemistry Departmental Mission Statement: Communicating Plus - Chemistry: Requirements for a major in chemistry:

CHEMISTRY COURSE INFORMATION Chemistry Department, CB 213,

CHEMISTRY COURSES UNDERGRADUATE GRADUATE FACULTY. Explanation of Course Numbers. Bachelor's programs. Combined programs. Minor.

NSTA Science Content Analysis Form: Secondary Science

Chemistry (CHEM) Degrees Offered. Program Description. Prerequisites for Admission. Application Requirements. General Information

CHEMISTRY (CHEM) CHEM 5. Chemistry for Nurses. 5 Units. Prerequisite(s): One year high school algebra; high school chemistry

CHEMISTRY UNDERGRADUATE RESEARCH CHEMISTRY 499W - UNDERGRADUATE RESEARCH AND REPORT WRITING PROJECT INFORMATION SHEETS

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

Chemistry Courses. Courses. Chemistry Courses 1

CHE 230 ORGANIC CHEMISTRY I. (3) Fundamental principles and theories of organic chemistry. Prereq: CHE 107 and 115.

(It will be applied from )

WHILE TAKING THIS MODULE YOU MUST TAKE CHE-4101Y OR TAKE CHE- 4301Y IN TAKING THIS MODULE YOU CANNOT TAKE CHE-4602Y

CHEMISTRY (CHEM) CHEM 5. Chemistry for Nurses. 5 Units. Prerequisite(s): One year high school algebra; high school chemistry

REQUIREMENTS FOR A MAJOR IN CHEMISTRY (B.A.): Eight lecture courses, the associated laboratory courses, and senior research (52 credits)

CHEMISTRY (CHEM) CHEMISTRY (CHEM) 1

CHEM CHEMISTRY. Note: See beginning of Section H for abbreviations, course numbers and coding.

CHM - CHEMISTRY. CHM - Chemistry 1

Prerequisite: CHEM 101.

Graduate Course Offerings

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

Physical Sciences. Prerequisites: CHM 1040 with a minimum grade of C- or CHM Permit

Course Code: BIO310 Course Title: Biology I (4 units)

Subject Overview Curriculum pathway

University Studies Natural Science Course Renewal

Chemistry lies at the heart of many of the technological

Agricultural. Chemistry. Agricultural production: crops and livestock Agrichemicals development: herbicides, pesticides, fungicides, fertilizers, etc.

CHEMISTRY (CHEM) Chemistry (CHEM) San Francisco State University Bulletin

Sciences Learning Outcomes

DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II

Chemical and Environmental Engineering Course Descriptions

College of Arts and Sciences. Chemistry

Chemistry. Semester 1. [C] = Compulsory. [C] Mathematical Analysis (A) I. [C] Introduction to Physics (A) I. [C] Chemical Principles.

Prerequisite: (MATH-092 ( or MATH-092A - 499Z or NEIU Math Placement Result or ACT

Department of Chemistry and Biochemistry

CHEMISTRY (CHEM) Chemistry (CHEM) San Francisco State University Bulletin

Chemistry. Courses. Chemistry 1

Chemistry. Resources and Facilities. Internal Funding. Faculty. Graduate Degree Requirements. Entrance Criteria. Examinations.

CHEM Lab for CHEM Hour. Accompanies CHEM Covers various topics from the course. Offers

College of Arts and Sciences. Chemistry

CCHEMISTRY 366. Inorganic Chemistry with Emphasis on Bioinorganic, Medicinal & Materials Chemistry

Chemistry. Chemistry. TRENT UNIVERSITY Undergraduate Calendar May 2018

Chemistry FRESHMAN PROGRAMS

CHEMISTRY. Degree Programs. Co-Terminal Options. Other Degree Programs in Chemistry. Research Honors Program. Chemistry 1

Prepares a teacher about equally in two teaching disciplines, usually with less than a major in each. This is a dual field program.

CHEMISTRY. Degrees Offered. Majors Offered. Minors Offered. Objective. Bachelor of Arts Major in Chemistry. I. General Education Requirements

CHEMISTRY. CHEM 0100 PREPARATION FOR GENERAL CHEMISTRY 3 cr. CHEM 0110 GENERAL CHEMISTRY 1 4 cr. CHEM 0120 GENERAL CHEMISTRY 2 4 cr.

CHEM - Chemistry and Biochemistry

K-12 Science Content Areas

CHEMICAL ENGINEERING (CHEN)

Requirement for the Major in Chemistry with a Concentration in Biochemistry

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 211. Course Name: Organic Chemistry I

Programme Specification MSc in Cancer Chemistry

The School of Science and Engineering

Chemistry. Chemistry 1

CBE2006(applied biology) is not included in major credits but included in graduation credits.

LOBs covered during tutorials: 7. Solve exercises related to atomic structure, electronic configurations, and periodic properties.

CHEMISTRY. For the Degree of Bachelor of Science in Liberal Arts and Sciences. Minor in Chemistry. For the Degree of Bachelor of Science in Chemistry

CHEMISTRY (CHEM) Chemistry (CHEM) 1

CHEMISTRY, BACHELOR OF SCIENCE (B.S.) WITH A CONCENTRATION IN PROFESSIONAL CHEMIST WITH HONORS

Chemistry and Biochemistry

KALAMAZOO COLLEGE ACADEMIC CATALOG

APPENDIX II. Laboratory Techniques in AEM. Microbial Ecology & Metabolism Principles of Toxicology. Microbial Physiology and Genetics II

CHEMISTRY (CHEM) Courses primarily for undergraduates: CHEM 050: Preparation for College Chemistry. (3-0) Cr. 3. F.S.

THE MAJORS Learning outcomes for this program may be found at

UNDERGRADUATE COURSES. Department of Chemical Engineering (Ch.E.)

Cherokee High School. Class Syllabus

Transcription:

In-depth, 2 Credit Courses Descriptions Note: The in-depth courses do not require completion of all the foundation courses as indicated by the specified prerequisite course(s). CHEM 343 Climate and Habitat Change Along with the positive advances that result from chemistry, copious amounts of toxic and corrosive chemicals have also been produced and dispersed into the environment. The course will address selections from different areas of environmental study that impact our climate and habitat. Specific topics could include global warming, ozone depletion, pollution, energy production and usage and toxic waste disposal. Approaches for remediation will be discussed. Prerequisites: Chem 250 & 255. 1. Gain an understanding of the impact of environmental stresses from a chemical perspective 2. Understand how environmental samples are analyzed and draw conclusions 3. Explore remediation strategies CHEM 344 A & B Environmental Chemistry A: Atmosphere (B: Lithosphere and Hydrosphere) (pending approval Spring 14) The behavior of chemicals in earth s natural systems is critical to the study of environmental chemistry. Recently, copious amounts of toxic and corrosive chemicals have been produced and dispersed into the environment. This course will address the source and fate of compounds found both in natural and polluted air or soil and water. The reactivity of compounds and their effect on the natural cycle in the atmosphere or lithosphere and hydrosphere will also be explored. Specific topics could include CFCs, dioxins, pesticides, polycyclic aromatic hydrocarbons (PAHs), ozone, and particulate matter OR water treatment processes, pharmaceuticals and personal care products, dioxins, pesticides, polybrominated biphenyl ethers (PBDEs), and DOM. Prerequisite: Chem 343 1. Evaluate the role and transformation of chemicals in the environment. 2. Apply fundamental chemistry principles to environmental topics. CHEM 345 Industrial and Engineering Processes This course is intended to teach students the underlying principles in the operation and process development of a product for industrial scale mass production. Topics for this course will include testing/trials, production design, and resource management. Prerequisite: CHEM 255 1. Recognize and classify modern chemical/pharmaceutical industries in terms of products, raw materials, scale and types of transformations

2. Describe the basic chemical principles underlying selected organic and inorganic industrial chemistry processes 3. Develop critical skills at analyzing cost/benefit/impact of traditional industrial chemical processes including green chemistry on the society as a whole CHEM 346 Nanomaterials This course will focus on the fundamental principles in nanomaterials. Topics may include structural materials, conductors, semiconductors, sensors or polymers. The students will be presented with current synthetic techniques for the production of bulk and nanostructured materials along with analytical methodologies to physically characterize materials. Prerequisites: CHEM 315 OR 318 1. Explain or predict how the atomic/molecular/nanoscale structure is related to important properties such as material strength, conductivity, absorption and emission of light, and chemical reactivity. 2. Understand the typical methods for the synthesis of such materials. 3. Understand methods for characterizing materials. 4. Be aware of application of materials chemistry in everyday life as well as areas of current research interest. CHEM 347 Chemical Biology Chemical biology will cover topics of current interest in chemical biology and will survey the way in which small molecules are used to investigate and manipulate biological systems either for a biological or chemical purpose. Specific topics may include protein design, development of unnatural biological molecules, peptide-carbohydrate interactions, combinatorial synthesis/libraries, molecular recognition, chemical genetics, biosynthesis and methods of drug discovery. Prerequisite: CHEM 251 Recommended: BIOL 121 and CHEM 315 1. Understand the role of synthetic chemistry to elucidate molecular pathways 2. Explore biological systems using chemical informatics 3. Understand molecular probes in studying disease biology CHEM 348A Molecular Design - Organic Molecular design and catalysis are important applications of chemical reactivity concepts. In this course, students will learn about some current methods useful in synthesis and see these methods applied in the synthesis of complex molecules. Topics may include organo-transition metal reactions, catalytic methods of enantioselective synthesis and retrosynthetic analysis. Students will demonstrate basic proficiency in these areas and also carry out detailed analyses of total syntheses from the current literature. Pre- OR Co-requisite: CHEM 315

1. Propose syntheses of organic or biologically relevant molecules 2. Understand methods of asymmetric control 3. Analyze syntheses from the chemical literature CHEM 348B Molecular Design-Inorganic (pending approval Spring 14) The design and synthesis of compounds containing transition metals is an important area of modern chemistry. In this course, students will learn the general principles of inorganic syntheses. Case studies from the chemical literature will then be examined in areas such as the synthesis of homogenous and heterogeneous catalysts, models for active sites in metalloenzymes, and solid state compounds. Pre- OR Co-requisite: CHEM 315 1. 1.will know general driving forces for chemical reactions involving inorganic species, including entropy and enthalpy effects, hard and soft acids and bases, use of labile ligands, and the like; 2. will be able to assess the likelihood of success of a proposed synthesis ; 3. will understand different synthetic techniques in solid state, organometallic and coordination chemistry. CHEM 352 Signal Transduction and Cell Communication (pending approval Spring 14) Living cells and organisms must respond to their environment, which allows them to adapt to a variety of external conditions. We will use the language of chemistry (thermodynamics, kinetics, analysis, reactivity and modeling) as well as the languages of biology and mathematics, to explore systems of interactions and regulations within and between cells, and how signaling and regulation within complex biological systems leads to biological function, behavior, homeostasis, adaptation and emergence of new traits. Especially attention will be given to the development of learning and memory. Prerequisite: CHEM 251; Recommended: BIOL 121 and CHEM 315. 1. explain general strategies used in the regulation of biological pathways and systems and the analytical tools used to study such pathways; 2. describe and analyze communication pathways involved in complex processes such as learning and memory; 3. use web databases, mathematical programs, and the literature to model, analyze and interpret molecular interactions in biological pathways.

CHEM 353 Xenobiotic Metabolism This course will explore biological mechanisms of activation and detoxification of xenobiotics. Topics will include oxidation/ reduction mechanisms (e.g. Cytochrome P450, Flavin Mono-Oxygenase), transferase reactions (e.g. Glutathione S-Transferase, Glycosyltransferases, Acetyltransferases), adduct formation, and repair mechanisms. Prerequisite: CHEM 315 Recommended BIOL 121.Course Objectives: 1. To understand fundamental toxicology principles and applications 2. To classify the different routes of toxic exposure, metabolic pathways, mechanisms of distribution within the body, and elimination processes; 3. To understand the effects of different toxicants and stressors in terms of target effect on cells, organs and organisms CHEM 354 Sustainable Energy (pending approval Spring 14) The world s energy demands are increasing, and drawbacks associated with fossil fuels have spurred the search for energy alternatives. This course will examine alternative options such as solar energy, nuclear energy, hydrogen economy and fuel cells, ethanol production from switchgrass or algae versus corn, other biofuels and batteries. In addition, methods for making fossil fuels more sustainable will be discussed. Emphasis will be on the chemistry and thermodynamics of these processes with a focus not only the final energy production but the actual energy costs and environmental impacts of a given technology. Prerequisites: Chem 250 and Chem 255. 1. understand how energy is produced via each of the energy alternatives 2. demonstrate that they can apply thermodynamic and other chemical principles learned in other courses to energy production; 3. explain the pros and cons of different energy choices. CHEM 355 Analysis of Biomaterials This course provides an overview of principles of bioanalytical methods and the application of modern instrumental techniques to biological systems. Particular focus will be placed on fundamental principles and analytical measurements of biomolecules, immunoassays, separations, biological mass spectrometry, microscopy and imaging. Emerging technologies such as nanotechnology-enabled biosensors, microfluidic devices and lab-on-chip may also be addressed. Error analysis, statistical treatment of data and validation of bioanalytical methods and devices are included. Prerequisite: CHEM 255 AND CHEM 205 Recommended: BIO 121

1. Identify and select the most effective technique/instrument for addressing a given bioanalytical problem 2. Understand the physical, chemical and instrumental fundamentals underlying the bioanalytical experimental design and quality control 3. Understand the application of advanced analytical chemistry and biochemistry in solving problems in chemistry, biochemistry, and medical science CHEM 356 Instrumental Design and Technology (pending approval Spring 14) This course will study the modern techniques of instrumental analysis focusing on electronics, optics, physical design and limitations of instrumentation in analytical chemistry. Upon completion of this course students will understand the theory of instrumentation for optical spectroscopy, chromatography, mass spectroscopy, and electrochemistry. Additionally, students will be able to select an instrument based on what needs to be known about a sample. The course will also examine the development of new technologies for instrumentation used in security devices, in the human body for medical devices, as well as in space and underwater exploration. Prerequisite: CHEM 255 AND CHEM 205 1. Choose an appropriate instrumental technique when you encounter a measurement or separation problem. 2. Process, interpret, and present instrumental data (both orally and in writing). 3. Knowledgeably operate chemical instrumentation based on an understanding of their operating principles. CHEM 357: Separation Science (pending approval Spring 14) This course provides a systematic study of the modern techniques for analytical separations in terms of underlying principles, instrumentation, data interpretation and practical applications. Emphasis will be placed on gas and liquid chromatography, electrophoresis, two dimensional separations, and hyphenated techniques. Topics will be explored through a combination of scientific readings, case studies, and independent projects. Prerequisite: CHEM 255 AND CHEM 205 1. Describe and explain the fundamental principles and instrumentation of selected analytical separation techniques 2. Interpret data from separation methods for the purpose of method development, validation, and quantitation 3. Select and apply appropriate separation methods for analysis of complex real-world samples

CHEM 358 Biomacromolecules Student will explore how the unique 3D structures of proteins, RNA, nucleic acids, and glycans arise and confer on those molecules their roles in catalysis, regulation, recognition and information storage. Students will develop an enhanced structural, thermodynamic and dynamic understandings of biomacromolecules and their biological functions and how in vivo and in vitro alternations in structure confers on them new biological properties. Prerequisite: CHEM 251 and 255; Recommended: BIOL 121 1. explain how the biological functions of proteins, nucleic acids and glycans can be understood through knowledge of the chemical and physical properties of the monomeric units and of the structures of the polymers that are formed from them; 2. use basic principles of thermodynamics, molecular dynamics, chemical reactivity and conformational analyses to explain and predict the properties of biomacromolecules and how their structure and properties can be changed; 3. read recent literature and analyze data derived from experimental and theoretical studies on biomacromolecules to predict and modify theri structure, properties, and biological function. CHEM 359 Symmetry, Orbitals and Spectroscopy This course will involve the study and application of symmetry, group theory and quantum mechanics to spectroscopy and molecular orbital theory. Prerequisite: CHEM 318 1. Xx 2. Xx 3. xx. CHEM 361 Insights into Mechanistic Determination (pending approval Spring 14) This course will study how chemists determine organic, inorganic and biochemical reactions. Emphasis will be on methods for monitoring reaction rates and using experimental data to propose reaction mechanisms. Techniques discussed could include kinetics, isotopic labeling studies, isolation of reaction intermediates, site-directed mutagenesis, computational models and/or synthesis of compounds for model studies. Pre- OR Co-requisite: CHEM 315 1. Understand a variety of experimental techniques used by chemists for mechanism determination and the limitations of these experiments 2. Analyze mechanistic studies of a system from primary literature sources 3. Propose reasonable mechanisms for reactions based on experimental data and an understanding of chemical reactivity

CHEM 364 Medicinal Chemistry (pending approval Spring 14) This course will explore the fundamental aspects and current methodologies involved in the drug discovery process. The fundamental aspects include the physical, chemical and pharmaceutical properties of drugs. The methodologies include lead discovery strategies, structure activity relationships, structure-based and mechanism-based design methods, computational drug design methods, combinatorial chemistry techniques, and drug delivery considerations. Application to current topics such as chemotherapy of cancer, or viral or microbial diseases will be examined. Prerequisite: CHEM 315 Recommended BIOL 121. 1. To understand fundamental medicinal chemistry principles and applications; 2. To have an appreciation of the various types of drug design approaches; 3. To have an understanding of covalent and non-covalent interactions between the drug targets and the small molecule drugs.

Tentative In-Depth Course Offering Schedule All In-Depth courses required for degree concentrations will be offered every year (in italics). All other courses will be offered in alternate years. The Fall/Spring distribution of courses is subject to change. An odd or even year is defined by the spring semester (i.e. fall 2014 and spring 2015 is an AY ODD year). AY EVEN Chemical Biology Climate and Habitat Change Industrial and Engineering Processes Environmental Chemistry B: Soil and Water Nanomaterials Molecular Design (Organic) Topics TBA Xenobiotic Metabolism Analysis of Biomaterials Biomacromolecules Symmetry and Spectroscopy Signal Transduction AY ODD Chemical Biology (FALL) Climate and Habitat Change (SPRING) Industrial and Engineering Processes (SPRING) Environmental Chemistry A: Atmosphere (SPRING) Polymers (SPRING) Molecular Design (Inorganic) (FALL) Sustainable Energy (SPRING) Medicinal Chemistry (FALL) Electronics and Instrumental Design (FALL) Structure Elucidation (SPRING) Separation Science (FALL) Insights into Mechanisms (FALL) Concentrations are Environmental (EN), Chemical Biology (CB), or Industrial/Materials (IM) Climate and Habitat Change CHEM 343 EN, IM Environmental Chemistry A: Atmosphere (odd) CHEM 344A EN Environmental Chemistry B: Soil and Water (even) CHEM 344B EN Industrial and Engineering Processes CHEM 345 IM Nanomaterials (even) CHEM 346 IM Chemical Biology CHEM 347 CB Molecular Design (Organic) (even) CHEM 348A CB Molecular Design (Inorganic) (odd) CHEM 348B IM, EN Signal Transduction (even) CHEM 352 CB Xenobiotic Metabolism (even) CHEM 353 CB Sustainable Energy (odd) CHEM 354 EN, IM Analysis of Biomaterials (even) CHEM 355 IM, CB Electronics and Instrumental Design (odd) CHEM 356 EN Separation Science (odd) CHEM 357 EN Biomacromolecules (even) CHEM 358 CB Symmetry and Spectroscopy (even) CHEM 359 Insights into Mechanisms (odd) CHEM 361 EN, IM Polymers (odd) CHEM 362 IM Structure Elucidation (odd) CHEM 363 CB Medicinal Chemistry (odd) CHEM 364 CB

Topics in Chemistry (As Needed) Computational Chemistry CHEM 321 Analytical Chemistry CHEM 322 Biochemistry CHEM 323 Inorganic Chemistry CHEM 324 Organic Chemistry CHEM 325 Physical Chemistry CHEM 326