Science Regional Prioritized Curriculum Draft Grade 6 Physical Setting

Similar documents
New Paltz Central School District

Concepts and Challenges Physical Science. New York Intermediate Level Science Core Curriculum

Processes that Shape the Earth

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are

Concepts and Challenges Earth Science. New York Intermediate Level Science Core Curriculum

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Sixth Grade

McKinley Presidential Library & Museum Planetarium Show Ohio Science Standards Fifth Grade

6 th Grade TEKS. Whacha-gotta-no!

Benchmark A: Describe how the positions and motions of the objects in the universe cause predictable and cyclic events.

CPO Science Middle School Earth Science Learning System Correlated to Ohio Science Academic Content Standards for Earth Science, grades 6-8

New Paltz Central School District Earth Science

S6E1. Obtain, evaluate, and communicate information about current scientific views of the universe and how those views evolved. a.

COURSE: General Science 15:1 GRADE LEVEL: 10/11

3 rd Grade Math Earth Science

Earth Science Curriculum Seventh Grade

The Official CA State Science Education Standards for Earth Science K 8

Unit 4. Unit 8 3 weeks Solar Sys. & Universe Earth and Moon

Unit Maps: Middle School Earth Science

Lesson 2 The Inner Planets

6 th Grade GLEs (Draft Alignment 4/22/08) EARL 1 Systems

Identify and explain monthly patterns in the phases of the Moon.

Pacing Guide TEKS. Unit 1 Scientific Process Skills and Investigations

Prentice Hall Science Explorer - Georgia Earth Science 2009

National Science Standards Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8

Science Colorado Sample Graduation Competencies and Evidence Outcomes

Prentice Hall: Science Explorer, 16 Book Series 2005 Correlated to: Alabama Science Standards for Earth and Space Science Core (Grade 6)

Earth & Weather. River of Knowledge. Energy & Fossils. Earth & Weather. River of Knowledge. Energy & Fossils

SEVENTH GRADE. By the end of grade seven, all students should be able to:

Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity.

CONTENTS CHAPTER 1: PROLOGUE The Local Environment... 1 Observation, Inference, Classification Properties of the Environment...

Changes in properties and states of matter provide evidence of the atomic theory of matter

2011 Iredell Statesville Schools 4 th Grade Science Q1 Q2 Q3 Q4. Forces and Motion

Dougherty County School System 6 th Grade Earth Science Curriculum Matrix

2nd Grade. Earth and Moon Cycles. Slide 1 / 133 Slide 2 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133.

2nd Grade Changing of Earth

Fifth Grade Science Curriculum

TAKE HOME EXAM 8R - Geology

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles.

High School Earth Science. High Science Strand 1: Earth s Place in the Universe

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10

Physical and Chemical Properties of Matter

MIDTERM REVIEW QUESTIONS - PACKET #2 (75 MULTIPLE CHOICE QUESTIONS)

A Living Planet. The Earth Inside and Out

Name Date Hour Table. Semester One Review #1-11 Directions: Mark the correct answer on each of the following questions.

CALIFORNIA STANDARDS TEST GRADE 5 SCIENCE (Blueprint adopted by the State Board of Education 10/02)

Demonstrates Competency in Science Grade 6

*These items are to be integrated throughout the content. However, you will find new resources for student practice with these concepts here.

Southington Public Schools Curriculum Map Subject: Science Grade: 6

The map shows ocean currents in the northern Atlantic Ocean. Which location most likely has the warmest climate?

Drawing from:

BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM

Passage (click here to show all)

What do we know about Mars? Lesson Review

Changes in properties and states of matter provide evidence of the atomic theory of matter

Course Guide. Introduction... 2

Name: Date: Class: 2. The diagram below shows the Moon revolving around Earth as viewed from space. (6.L.2.1)

TEST NAME:Geology part 1 TEST ID: GRADE:06 - Sixth Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom

Maryland State Department of Education Voluntary State Curriculum Middle School Grades

Curriculum Catalog

The Dynamic Earth Section 1. Chapter 3 The Dynamic Earth Section 1: The Geosphere DAY 1

Georgia Standards of Excellence for Science Grade 6

Bundle at a Glance 6 th Gr. Science 2015/16. Introduction: Scientific Investigation and Reasoning Skills (3 A/B days)

Grade 6 Science

8 th Grade Science Tutoring. Earth Space, Ms. Winkle

Diocese of Harrisburg Science Curriculum Grade 7

1. The diagram below shows Earth, four different positions of the Moon, and the direction of incoming sunlight.

Exploring Creation with Physical Science 2 nd Edition

EOC Study Guide Honors

South Carolina Interactive Science 2017

Earth as Planet. Earth s s Magnetic Field. The Earth s s Crust. Earth s s Interior

EARTH SCIENCE CP, GRADE

DISTRICT NAME Science Standards

(A) demonstrate safe practices during laboratory and field investigations as outlined in the Texas Safety Standards

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Name Period Date L.O: SWBAT DESCRIBE THE PROPERTIES OF THE ATMOSPHERE.(

Grade 8 Learning Objectives MS-PS2-4.

Processes That Shape the Earth Weather, Part I

Grade 9 End semester exam Revision sheet Answer key. Kingdom of Bahrain Ministry of Education Ahlia School -ABCD

Name Date Hour Table. Semester One Review #1-11 Directions: Mark the correct answer on each of the following questions.

Performance Level Descriptors. Science

6th Grade Science Scope & Sequence Darul Arqam Houston, Texas 1st Quarter (43 Days) Resources:

EARTH HISTORY SEVENTH GRADE

This Course. Course Standards. Course Questions:

Grade 7 Science, Quarter 3, Unit 3.1. Space Science. Overview

1 Characteristics of the Atmosphere

8 th Grade Science Curriculum

Meteorology Study Guide

5-ESS1-1 Earth's Place in the Universe

9 th Grade Honors General Science

Texas Education Agency 6 8 TEKS and TAKS for Science and English Language Arts: Middle School Grades. Passwords: Science Vocabulary

Grade 5 ENDURING UNDERSTANDINGS. MONTH - September GRADE - 5 SUBJECT - Science

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

8th Grade Science. (5A F) Matter and energy. The student knows that matter is composed of atoms and has chemical and physical properties.

HPISD Science Grade 5 Curriculum

Earth & Space Curriculum Map. Timeframe Topic/Concepts/Standards Eligible Content Assessments Suggested Resources

CURRICULUM CATALOG. GSE Earth Systems ( ) GA

Unit Content Standard Substandard Literature Selections Scientific. h. Describe soil as consisting Excerpts from Method, Deductive and

7 th Grade Science Curriculum. Earth Science

Tornado Alley (K-12) Virginia Standards of Learning. Kindergarten. Scientific Investigation, Reasoning, and Logic. Force, Motion, and Energy

8 th Grade Integrated Science Curriculum

Transcription:

Science Regional Prioritized Curriculum Draft Grade 6 Physical Setting Standard 4: Key Idea 1: Background: Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science. The Earth and celestial phenomena can be described by principles of relative motion and perspective. The universe is comprised of a wide array of objects, many of which can be seen by the unaided eye. Others can only be observed with scientific instruments. These celestial phenomena, distinct from Earth, are in motion relative to Earth and each other. Measurements of these motions vary with the perspective of the observer. Cyclical changes on Earth are caused by interactions among object in the universe. Guiding Questions: How do cyclical events allow the solar system to function? What makes the solar system a system? Grade 6 Physical Setting, Summer 2000 1

Standard 4: Key Idea 1: Performance Indicator 1.1: Explain daily, monthly, and seasonal changes on Earth. 1.1a Earth s Sun is an average-sized star. The Sun is more than a million times greater in volume than Earth. 1.1b Other stars are like the Sun but are so far away that they look like points of light. Distances between stars are vast compared to distances within our solar system. 1.1c The Sun and the plants that revolve around it are the major bodies in the solar system. Other members include comets, moons, and asteroids. Earth s orbit is nearly circular. 1.1d Gravity is the force that keeps planets in orbit around the Sun and the Moon in orbit around the Earth. 1.1e Most objects in the solar system have a regular and predictable motion. These motions explain such phenomena as a day, a year, phases of the Moon, eclipses, tides, meteor showers, and comets. Have student s research and report on the objects in the solar system using a set of guided questions. Have students share results, comparing the characteristics of each of the objects. Use information found to make a scale model of the solar system using 6 meters of adding machine tape. Have students develop a scale for distance and a scale for diameter. Use model for a discussion about the size of the solar system, and what would happen if you used the same scale for both measurements Students develop their own demonstrations or presentations to explain the following concepts: - Day/night - Seasons - Phases of the moon - Eclipses - Meteor showers and comets Ex. Assess demonstrations/presentations for understanding and relevancy of content. 1.1f The latitude/longitude coordinate system and our system of time are based on celestial observations. Tie to ancient world beliefs of astronomy to understand time through celestial observations Magic School Bus: Lost in the Solar System by Joanna Cole Grade 6 Physical Setting, Summer 2000 2

Standard 4: Key Idea 1: Performance Indicator 1.1: Explain daily, monthly, and seasonal changes on Earth. 1.1g Moons are seen by reflected light. Our Moon orbits Earth, while Earth orbits the Sun. The Moon s phases as observed from Earth are the result of seeing different portions of the lighted area of the Moon s surface. The phases repeat in a cyclic pattern in about one month. 1.1h The apparent motions of the Sun, Moon, Planets, and stars across the sky can be explained by Earth s rotation and revolution. Earth s rotation causes the length of one day to be approximately 24 hours. This rotation also causes the Sun and Moon to appear to rise along the eastern horizon and to set along the western horizon. Earth s revolution around the Sun defines the length of the year as 365 ¼ days. 1.1i The tilt of Earth s axis of rotation and the revolution of Earth around the Sun cause seasons on Earth. The length of daylight varies depending on latitude and season. Observe & record on chart (individual or whole group) the phase of the moon for several days/weeks. *A great kick off to unit! Use students as models to demonstrate rotation and revolution. First have students show rotation & revolution individually and when mastered combine both. Using a light source, globe and yarn-measure w/yarn, amount of daylight & darkness. Use the ratio to compare to number of hours in a day. (measurements can be taken from reference points - Equator, Tropics of Capricorn & Cancer) Given a location, have students predict amount of daylight and darkness in 3, 6, 9 months. Ex. Assess recordings of moon in journals and reasonableness of explanations for what they observed. 1.1j The shape of Earth, the other planets, and stars is nearly spherical. Grade 6 Physical Setting, Summer 2000 3

Standard 4: Key Idea 2: Background: Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science. Many of the phenomena that we observe on Earth involve interactions among components of air, water, and land. Students should develop an understanding of Earth as a set of closely coupled systems. The concept of systems provides a framework in which students can investigate three major interacting components: lithosphere, hydrosphere, and atmosphere. Processes act within and among the three components on a wide range of time scales to bring about continuous change in Earth s crust, oceans, and atmosphere. Guiding Questions: How do the lithosphere, hydrosphere and atmosphere interact? How have the lithosphere, hydrosphere and atmosphere changed over time? How are rocks affected by changes in the lithosphere, hydrosphere and atmosphere? Grade 6 Physical Setting, Summer 2000 4

Standard 4: Key Idea 2: Performance Indicator 2.1: Explain how the atmosphere (air), hydrosphere (water), and lithosphere (land) interact, evolve, and change. 2.1b As altitude increases, air pressure decreases. 2.1c The rock at Earth s surface forms a nearly continuous shell around Earth called the lithosphere. 2.1d The majority of the lithosphere is covered by a relatively thin layer of water called the hydrosphere. Divide the class into small groups, giving each a set of photographs of the features of the earth. Some should show land, some air, and some water (frozen and not). Instruct each group to sort/group the photographs. Discuss groupings and how the photographs represent the three parts of the earth. Students write explanations of how the pictures were grouped and how those groups relate to the area they live in. 2.1f Fossils are usually found in sedimentary rocks. Fossils can be used to study past climates and environments. 2.1g The dynamic processes that wear away Earth s surface include weathering and erosion. Have students collect various soil samples from a variety of locations. Observe, compare, and contrast samples. Draw conclusions about sources of samples and why they look different. Demonstrate layers of soil. Make soil profiles of various regions. Compare profiles and make inferences regarding the origin of the soil and possible uses. Ex. Assess explanations for prior knowledge of content. Ex. Assess student responses in class discussions for understanding. 2.1j Water circulates through the atmosphere, lithosphere, and hydrosphere in what is known as the water cycle. Provide a working model of the water cycle for students to observe (clear plastic container with lid placed in sun). In journals, students relate what happens in the demonstration to what happens in their own environment (Where could you see this? Why does this happen?). Use and stress the water cycle vocabulary. Have students find, illustrate, and explain an actual example of the water cycle in action in environment. Ex. Evaluate journal responses for vocabulary used and reasonableness of explanations. Ex. Assess water cycle illustrations for accuracy. Grade 6 Physical Setting, Summer 2000 5

Standard 4: Key Idea 2: Performance Indicator 2.1: Explain how the atmosphere (air), hydrosphere (water), and lithosphere (land) interact, evolve, and change. Grade 6 Physical Setting, Summer 2000 6

2.1h The process of weathering breaks down rocks to form sediment. Soil consists of sediment, organic material, water, and air. 2.1i Erosion is the transport of sediment. Gravity is the driving force behind erosion. Gravity can act directly or through agents such as moving water, wind, and glaciers. Divide into three groups. Provide each group with a variety of samples of 1 type of rock (igneous, sedimentary, and metamorphic). Have each group observe and record the common characteristics of their rocks. Discuss and label each category and origin. Record final information on a graphic organizer. Grade 6 Physical Setting, Summer 2000 7

Standard 4: Key Idea 2: Performance Indicator 2.2: Describe volcano and earthquake patterns, the rock cycle, and weather and climate changes. 2.2b Analysis of earthquake wave data (vibrational disturbances) leads to the conclusion that there are layers within Earth. These layers-the crust, mantle, outer core, and inner core have distinct properties. 2.2c Folded, titled, faulted, and displaced rock layers suggest past crustal movement. 2.2d Continents fitting together like puzzle parts and fossil correlations provided initial evidence that continents were once together. 2.2e The Theory of Plate Tectonics explains how the solid lithosphere consists of a series of plates that float on the partially molten section of the mantle. Convection cells within the mantle may be the driving force for the movement of the plates. 2.2f Plates may collide, move apart, or slide past one another. Most volcanic activity and mountain building occur at the boundaries of these plates. Often resulting in earthquakes. Use a peach (cross sectional view) to model layers of the earth. Make colored clay models to represent layers. Manipulate continents to show how they once may have fit together. Give students a set of rocks that includes samples of sedimentary, metamorphic, and igneous. Have students separate into different groups and list characteristics. Debrief as a whole class and revise lists. Plot volcano & earthquake sites on a map. Use findings to speculate why grouped in certain patterns (plate tectonics). Using one sample, plot the process of change (building up destroying down): Ex. Sand Sandstone Ex. Assess speculations for understanding. 2.2g Rocks are classified according to their method of formation. The three classes of rocks are sedimentary, metamorphic, and igneous. Most rocks show characteristics that give clues to their formation conditions. 2.2h The rock cycle model shows how types of rock or rock material may be transformed from one type of another rock to another. Standard 4: Key Idea 2: Performance Indicator 2.2: Describe volcano and earthquake patterns, the rock cycle, and weather and climate changes. Grade 6 Physical Setting, Summer 2000 8

2.2i Weather describes the conditions of the atmosphere at a given location for a short period of time. 2.2j Climate is the characteristic weather that prevails from season to season and year to year. 2.2k The uneven heating of Earth s surface is the cause of weather. 2.2l Air masses form when air remains nearly stationary over a large section of Earth s surface and takes on the conditions of temperature and humidity from that location. Weather conditions at a location are determined primarily by temperature, humidity, and pressure of air masses over that location. 2.2m Most local weather condition changes are caused by the movement of air masses. 2.2n The movement of air masses is determined by prevailing winds and upper air currents. 2.2o Fronts are boundaries between air masses. Precipitation is likely to occur at these boundaries. 2.2p High-pressure systems generally bring fair weather. Low-pressure systems usually bring cloudy, unstable conditions. The general movement of highs and lows is from west to east across the United States. 2.2q Hazardous weather conditions include thunderstorms, tornadoes, hurricanes, ice storms, and blizzards. Humans can prepare for and respond to these conditions if given sufficient warning. 2.2r Substances enter the atmosphere naturally and from human activity. Some of these substances include dust from volcanic eruptions and greenhouse gases such as carbon dioxide, methane, and water vapor. These substances can affect weather, climate, and living things. Computer Program Kids as Global Scientists Check out www.onesky.umich.edu for information relevant to the sky and weather. Students collect data, graph and report data, and use information to predict future weather events Have students create weather instruments to collect information and to better understand how they work. Interpret and read weather maps Communicate with students around the world to compare weather data and make conclusions about climate and how it impacts people Investigate weather phenomenon that has occurred locally or nationally, or in the world. Publish articles about weather for school newspaper Investigate how the substances that enter our atmosphere naturally and from human activity affect the ecosystem. (See Dimensions of Learning manual pp. 246-254 for information on systems analysis.) Ex. Assess reports using induction and deduction rubrics. Ex. Assess weather reports for accuracy and appropriate use of terminology. Ex. Use a systems analysis rubric to assess student s understanding of the affects on our ecosystem. Grade 6 Physical Setting, Summer 2000 9

Standard 4: Key Idea 3: Background: Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science. Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity. Objects in the universe are composed of matter. Matter is anything that takes up space and has mass. Matter is classified as a substance or a mixture of substances. Knowledge of the structure of matter is essential to students understanding of the living and physical environments. Matter is composed of elements, which are made of small particles called atoms. All living and non-living material is composed of these elements. Guiding Questions: How is the knowledge of the structure of matter essential to understanding living and physical systems? Grade 6 Physical Setting, Summer 2000 10

Standard 4: Key Idea 3: Performance Indicator 3.3: Develop mental models to explain common chemical reactions and changes in states of matter. 3.3a All matter is made up of atoms. Atoms are far too small to see with a light microscope. Have students create models of atoms including protons, neutrons, electrons & nucleus using materials and objects commonly found around the home. 3.3b Atoms and molecules are perpetually in motion. The greater the temperature, the greater the motion. 3.3e The atoms of any one element are different from the atoms of other elements. Review states of matter. Show water, ice and steam. Have students discuss in pairs what they think is happening to the atoms and molecules. Use students to represent atoms & molecules. Have them act out being in a solid, liquid & gas. Assign students to be a proton, neutron and electron. Have each make up a biography of their particle in a certain element and then write a story about how they function in the atom. Write paragraphs explaining which state of matter students would prefer to be in and explain why. Show periodic table explain symbol representation. Give common compounds and have students guess what they are. (ex. NACL= table salt) Ex. Observe students demonstrations of the states of matter for understanding. Ex. Assess biographies for understanding and accuracy in describing their particle s functions. Have students create pictorials or graphics to help them remember the different compounds on the periodic table. (See Dimensions of Learning manual pp. 74-82 for strategies on helping students store information.) Working in small groups, have students devise a new system to organize the elements so that people understand that each element is unique. Develop a scavenger hunt around school to find common elements in school. Ex. Using a student/teacher created rubric evaluate their new systems for clarity, accuracy, and creativeness. Grade 6 Physical Setting, Summer 2000 11

Standard 4: Key Idea 4:4 Background: Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science. Observe and describe the properties of sound, light, magnetism, and electricity. An underlying principle of all energy use is the Law of Conservation of Energy. Simply stated, energy cannot be created or destroyed. Energy can be transformed, one form to another. These transformations produce heat energy. Heat is a calculated value, which includes the temperature of the material, the mass of the material, and the type of the material. It should be noted that temperature is not a measurement of heat. Guiding Questions: How is electrical energy produced and transformed? What are the effects of the production of electricity and its transformation? Grade 6 Physical Setting, Summer 2000 12

Standard 4: Key Idea 4: Performance Indicator 4.4: Observe and describe the properties of sound, light, magnetism, and electricity. 4.4a Different forms of electromagnetic energy have Different wavelengths. Some examples of electromagnetic energy are microwaves, infrared light, visible light, ultraviolet light, X-rays and gamma rays. 4.4dElectrical energy can be produced from a variety of energy sources and can be transformed into almost any other form of energy. 4.4e Electrical circuits provide a means of transferring electrical energy. 4.4f Without touching them, material that has been electrically charged attracts uncharged material, and may either attract or repel other charged material. 4.4g Without direct contact, a magnet attracts certain materials and either attracts or repels other magnets. The attractive force of a magnet is greatest at its poles. Using a list of forms of energy (heat, sound, solar, nuclear, kinetic, light, chemical, and potential) have students brainstorm how electricity can be transformed into almost all of the above forms. Show students several electrical devices (light bulb, toaster, blender). Students list the types of energy that electricity was transformed to. Demonstrate electrical circuits - open, closed, series, parallel. Have students outline each circuit and then recreate make using their outline. Have students choose 1 type of circuit, create it without outline and explain why it works and how this is/could be used in real life. Balloon & hair demonstration Place magnets on a table, have students form a hypothesis about what will happen when the magnets touch. Give time to play with magnets. Record results and draw conclusions. Ex. Assess outlines for accuracy. Ex. Assess demonstrations for understanding and clarity of demonstration. Ex. Collect recorded results to assess validity of conclusions. Grade 6 Physical Setting, Summer 2000 13

Standard 4: Key Idea 5: Background: Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science. Energy and matter interact through forces that result in changes in motion. Examples of objects in motion can be seen all around us. These motions result from an interaction of energy and matter. This interaction creates forces (pushes and pulls), which produce predictable patterns of change. In studying motion, it is important for students to have the ability to observe, describe, and compare effects of forces on the motion of objects. Common forces would include gravity, magnetism, and electricity. Friction is a force that should always be considered in a discussion of motion. When the forces acting on an object are unbalanced, changes in object s motion occur. The changes could include a change in speed or a change in direction. When the forces are balanced, the motion will remain unchanged. Understanding the laws that govern motion allow us to predict these changes in motion. Guiding Questions: How do the interactions between magnetism and electricity produce usable and predictable patterns? Grade 6 Physical Setting, Summer 2000 14

Standard 4: Key Idea 5: Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science. Energy and matter interact through forces that result in changes in motion. Standard 4: Key Idea 5: Performance Indicator 5.2: Observe, describe, and compare effects of forces (gravity, electric current, and magnetism on the motion of objects. 5.2b Electric currents and magnets can exert a force on each other. Make an electromagnet. Make and discuss electric motors, electrical cars, etc. Reliable? Dependable? Practical for everyone? Grade 6 Physical Setting, Summer 2000 15

Standard 4: Key Idea 5: Performance Indicator 5.2: Observe, describe, and compare effects of forces (gravity, electric current, and magnetism on the motion of objects. Kids As Global Scientists Title www.onesky.umich.edu Resource Materials Source Title Source Heath Life Science series Exploring Earth Science - Lab Manual *source for hand s-on activities How the Weather Works Ecology- The Earth s Living Resources Environmental Science Activities Kit DC Heath and Co. ISBN#0-669-113662 Prentice Hall ISBN# 0-13-807652-9 Reader s Digest ISBN# 0-89577-612-x Prentice Hall ISBN# 0-13-423443-x The Center for Applied Research in Education ISBN# 0-87628-304-0 Grade 6 Physical Setting, Summer 2000 16

Magic School Bus - Lost in the Solar System By J. Cole Dimensions of Learning by Robert Marzano, Debra Pickering, et. al. ASCD 1-800-933-2723 Grade 6 Physical Setting, Summer 2000 17