Elementary Theory of DC Permanent Magnet Motors

Similar documents
Characteristics of DC Motors

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Tutorial 1 - Drive fundamentals and DC motor characteristics

Lesson 17: Synchronous Machines

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

Overview of motors and motion control

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

Chapter 4. Synchronous Generators. Basic Topology

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE

Step Motor Modeling. Step Motor Modeling K. Craig 1

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems

MAE106 Homework 2 - Solution DC Motors & Intro to the frequency domain

Introduction to Synchronous. Machines. Kevin Gaughan

Equal Pitch and Unequal Pitch:

MCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

Synchronous Machines

E11 Lecture 13: Motors. Professor Lape Fall 2010

JRE SCHOOL OF Engineering

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

Encoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics

Department of Mechanical Engineering

DcMotor_ Model Help File

INDUCTION MOTOR MODEL AND PARAMETERS

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL

Generalized Theory of Electrical Machines- A Review

(a) Torsional spring-mass system. (b) Spring element.

Electromagnetism Review Sheet

Chapter 21 Lecture Notes

AP Physics C - E & M

SECTION - I. PULL-IN-OPERATION Op SYNCHRONOUS MOTORS

COURSE OF Prepared By: MUHAMMAD MOEEN SULTAN Department of Mechanical Engineering UET Lahore, KSK Campus

FALL 2004 Midterm Exam #2, Part A

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II

Conventional Paper-I-2011 PART-A

Electromagnetism Notes 1 Magnetic Fields

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2002 Prentice Hall, Inc. Gene F. Franklin, J. David Powell, Abbas Emami-Naeini Feedback Control of Dynamic Systems, 4e

Rotational Systems, Gears, and DC Servo Motors

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

DC Motor Position: System Modeling

Reading Assignments Please see the handouts for each lesson for the reading assignments.

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00

How an Induction Motor Works by Equations (and Physics)

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK

Model of a DC Generator Driving a DC Motor (which propels a car)

Mutual Inductance. The field lines flow from a + charge to a - change

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy

Synchronous Machines

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

8 z 2, then the greatest value of z is. 2. The principal argument/amplitude of the complex number 1 2 i (C) (D) 3 (C)

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets

Circuit Analysis and Ohm s Law

The General Resistor Circuit Problem

Unit 12: Magnetism. Background Reading

Material World: Electricity

Ph.D. Qualifying Exam. Electrical Engineering Part I

What to Add Next time you update?

6) Motors and Encoders

ME 112 Mechanical Systems Design, Winter 2014

Solutions to Systems of Linear Equations

Loss analysis of a 1 MW class HTS synchronous motor

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement

Module 3 Electrical Fundamentals

EC T32 - ELECTRICAL ENGINEERING

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.

Magnetostatics: Part 1

AP Physics C - E & M

magneticsp17 September 14, of 17

ELECTRICALMACHINES-I QUESTUION BANK

Single-phase Transistor Lab Report. Module: EEE 108

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

DC motors. 1. Parallel (shunt) excited DC motor

Project 1: Analysis of an induction machine using a FEM based software EJ Design of Electrical Machines

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise

Motor Info on the WWW Motorola Motors DC motor» /MOTORDCTUT.

Chapter 30 Self Inductance, Inductors & DC Circuits Revisited

Lecture 4: Losses and Heat Transfer

Sliding Conducting Bar

د شوقي حامد عرفه ابراهيم

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Revision Guide for Chapter 15

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives

Selection of precision micro drives

Problem Solving: Faraday s Law & Inductance. Faraday s Law

Electromagnetic Energy Conversion Exam 98-Elec-A6 Spring 2002

Selection of precision micro drives

Induction Motors. The single-phase induction motor is the most frequently used motor in the world

Power Electronics. Prof. B.G Fernandes. Department Of Electrical Engineering. Indian Institute of Technology, Bombay.

Multi-loop Circuits and Kirchoff's Rules

Physics 2112 Unit 18

Modelling and simulation of a measurement robot

Transcription:

Much appreciation to David Cowden at Ga. Tech.: Web citation from 10/15/2004 http://www.srl.gatech.edu/education/me3110/primer/motors.htm Motors Introduction This section contains information about implementing dc motors in a mechanical system. Pimary emphasis is placed on DC permanent magnet motors, since these motors are the most common, least expensive, and lightest type of motors. Elementary Theory of DC Permanent Magnet Motors Since this type of motor uses a permanent magnet to generate the magnetic field in which the armature rotates, the motor can be modeled by the electrical circuit in the armature alone. If we further simplify the circuit by ignoring the inductance of the armature coil, we arrive with the following circuit diagram for a simple motor: V is the voltage supplied by the power source (usually a battery), and R is the resistance of the motor's armature coil. This resistance cannot be measured at rest, since it changes as speed increases towards the steady state speed. Kirchoff's voltage law leads to the following equation:

By examining the effect of the magnetic field in the motor, and realizing that magnetic flux is constant, we can arrive at the following two equations relating the torque and speed output of the motor to the supplied current and voltage: These are often known as the transducer equations for a motor, since a motor is really an electro-mechanical transducer. The constants Kv and Km are dependent on the particular motor, but if they are expressed in SI UNITS, their values are always equal, thus V R ω = 2 K K T (note this equation corrected from original web citation) It is important to remember that, in this equation, T is the total torque acting on the motor, and is generally non-zero even with no applied load, due to the internal losses in the motor. This equation implies that the speed of the motor is equal to some constant, which is a function of the applied voltage and the motor constant, minus another constant times the applied torque. This is an important relation, since it reveals that for this motor model, Torque is a linear function of speed. If torque is plotted vs. speed for a motor, the plot will typically look like this: (note that y-axis intercept definition is wrong. It should read w o =V/K) The intercepts of the line at the T and w axes are especially important, since they give the values of the stall torque and the no-load speed.the stall torque is the torque which the

motor provides when the rotor of the motor is held at zero velocity. It is not difficult to derive from the diagram holding speed and torque, respectively, at zero, that: It is very important to note that in our development, we have included the Torque on the motor, T, as only one term, which includes both a load torque and the torque that is provided by the bearings of the motor and the frictional losses within the motor. The consequence is that, in practice, the torque on the motor is never really zero, and the noload speed is really only approximately given by the relation above. Similar arguments apply to the stall torque, although in this case the difference is much smaller since there are no frictional losses in a motor when the speed is zero. Since we commonly find the no-load speed given when we buy a motor, we can substitute the no-load speed into the general equation above and find a bit more useful relation for the loaded speed of a motor: ω R K = ωo 2 T Finally, by taking the derivative of this equation with respect to power, we can find that the maximum power that can be output by the motor is given by the relation: This equation is especially useful when evaluating how large a motor might be required for an application. Limitations of this motor model There are several assumptions that we have made in the development of this model, which are very important to keep in mind when using the above relations to implement a dc permanent magnet motor: 1. The torque on the motor has all been lumped into one term, which includes the torque provided by the bearings of the motor and other frictional losses. The consequence of this assumption means that in general, the no-load speed will only

approximately be given by the relation w=v/k, since in practice a small, non-zero frictional load is always present. 2. We have assumed that the inductance of the motor is zero, which is normally a good assumption (especially for steady state), but must be re-evaluated if transient response of the motor is to be analyzed. 3. We have assumed that the resistance of the motor is constant, which is ideally not true. The resistance of the motor actually changes slightly with speed, and also with temperature. These changes are normally small, however, so this is a valid assumption unless the motor is operating at very high temperatures 4. We have assumed in the development that we actually know the motor constant, K, and the resistance, R, which is in general NOT the case. The motor specifications section is devoted to characterizing motors given information which we in practice are able to obtain. Motor Specifications Normally, when you obtain a motor from a commercial source, you will not immediately know all the information necessary to characterize the motor in terms of the theoretical development above. Some motors include the Stall Torque, the no-load speed, and the Resistance, while others include only the rated voltage and the power output at maximum power. In these cases, there are several things you can do to experimentally determine the motor constant, internal resistance of the motor, etc. Here are some basic steps to take to characterize your motor: 1. Look on the package of the motor, and obtain all the information you can from there. Then use the given information in the above equations to calculate the values of K, R, or other values that you don't know. For example: o Usually at least the Voltage and the no-load speed are given. If they are, you can use the above equations to calculate K=w*V. Be sure to use the correct units. o If the stall torque is given, and you have already found K from step 1, you can find the value of R, the internal resistance of the motor. If the package of your motor does not contain the information you need, you can always contact the manufacturer, who will be able to give you all the details of the motor that you require. 2. If step one did not yield enough information to calculate all the parameters, you can test the motor to find some of the values yourself:

o Use an ammeter (measures current) to measure the current the motor draws. Apply a voltage to the motor, and allow the motor to run with no load. Measure the no load current. From above, knowing K, the motor constant, we can calculate the friction torque, Tf, on the motor is I(no load)*k. This torque is present at all times when the motor is running. (It is actually not constant with speed, but it is small, and we can assume without much loss in accuracy that this is the case). o If you have access to a tachometer, measure the no-load speed, and from the measured Voltage applied calculate K. You can also measure the noload speed if you have a strobe light by adjusting the strobe period until the motor appears to "stand still". o Attach a large gear to your motor, and hang a weight from a string that will be wrapped up as the motor turns. At the bottom of the string, hang an object of known mass, or a cup that can hold water. Then, apply a voltage, and continue to increase the voltage until the motor just supports the weight of the object. By calculating the weight of the object and the radius of the gear, you can calculate the stall torque of the motor. You know the Voltage applied, so from the relations above you can then calculate (since w=0) that R=Tstall/(K*V). This type of test is called the locked rotor test. Another way to perform this test is by applying a constant voltage and varying the applied weight until the stall torque is reached. 3. Finally, if you cannot obtain the information from the motor itself, and for some reason you cannot obtain the information using the above tests, you can get an idea of the performance of your motor by using information from other motors. For example, if another motor where you got yours has the internal resistance, you could guess that the resistance of your motor is similar, and make the rest of your analysis more conservative to account for the error. References 1. Shigley, J.E, and Mischke, C.R., Mechanical Engineering Design, 5th Ed., McGraw-Hill, New York 1989. 2. Buchsbaum, Frank, Design and Application of Small Standardized components Data Book 757 Vol. 2, Stock Drive Products, 1983 (Free copies available at Stock Drive Products).