A Characterization of Distance-Regular Graphs with Diameter Three

Similar documents
A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

Eigenvalues and edge-connectivity of regular graphs

Strongly Regular Decompositions of the Complete Graph

Cospectral graphs and the generalized adjacency matrix

A lower bound for the spectral radius of graphs with fixed diameter

Tilburg University. Strongly Regular Graphs with Maximal Energy Haemers, W. H. Publication date: Link to publication

Divisible Design Graphs

Some spectral inequalities for triangle-free regular graphs

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups

Intriguing sets of vertices of regular graphs

An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs

Distance-regular graphs where the distance-d graph has fewer distinct eigenvalues

A Questionable Distance-Regular Graph

Linear Algebra and its Applications

Graphs with given diameter maximizing the spectral radius van Dam, Edwin

Tilburg University. Binary codes of strongly regular graphs Haemers, Willem; Peeters, Rene; van Rijckevorsel, J.M.

ELA A LOWER BOUND FOR THE SECOND LARGEST LAPLACIAN EIGENVALUE OF WEIGHTED GRAPHS

Regular factors of regular graphs from eigenvalues

The maximum size of a partial spread in H(4n + 1,q 2 ) is q 2n+1 + 1

Bipartite graphs with five eigenvalues and pseudo designs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Edge-Disjoint Spanning Trees and Eigenvalues of Regular Graphs

The minimal spectral radius of graphs with a given diameter

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

The maximum edge biclique problem is NP-complete

Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith

New feasibility conditions for directed strongly regular graphs

The non-bipartite graphs with all but two eigenvalues in

An Introduction to Spectral Graph Theory

Very few Moore Graphs

Applicable Analysis and Discrete Mathematics available online at GRAPHS WITH TWO MAIN AND TWO PLAIN EIGENVALUES

On a lower bound on the Laplacian eigenvalues of a graph

arxiv: v4 [math.co] 12 Feb 2017

Combinatorial designs with two singular values II. Partial geometric designs

Lecture 21: The decomposition theorem into generalized eigenspaces; multiplicity of eigenvalues and upper-triangular matrices (1)

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

Strongly regular graphs and substructures of finite classical polar spaces

Recall the convention that, for us, all vectors are column vectors.

BOUNDS FOR LAPLACIAN SPECTRAL RADIUS OF THE COMPLETE BIPARTITE GRAPH

Chapter 2 Spectra of Finite Graphs

On the eigenvalues of Euclidean distance matrices

Bulletin T.CXXII de l Académie Serbe des Sciences et des Arts Classe des Sciences mathématiques et naturelles Sciences mathématiques, No 26

Smith Normal Form and Acyclic Matrices

Normalized Laplacian spectrum of two new types of join graphs

Central Groupoids, Central Digraphs, and Zero-One Matrices A Satisfying A 2 = J

2 Eigenvectors and Eigenvalues in abstract spaces.

Fall 2016 MATH*1160 Final Exam

GENERALIZED EIGENVECTORS, MINIMAL POLYNOMIALS AND THEOREM OF CAYLEY-HAMILTION

On marker set distance Laplacian eigenvalues in graphs.

The chromatic number and the least eigenvalue of a graph

Laplacian Integral Graphs with Maximum Degree 3

DAVIS WIELANDT SHELLS OF NORMAL OPERATORS

Four new upper bounds for the stability number of a graph

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Linear algebra and applications to graphs Part 1

Note on deleting a vertex and weak interlacing of the Laplacian spectrum

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions

SDP and eigenvalue bounds for the graph partition problem

Distinct distances between points and lines in F 2 q

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later.

Spectral Graph Theory Lecture 3. Fundamental Graphs. Daniel A. Spielman September 5, 2018

. Here the flats of H(2d 1, q 2 ) consist of all nonzero totally isotropic

Math 489AB Exercises for Chapter 1 Fall Section 1.0

1. Let A = (a) 2 (b) 3 (c) 0 (d) 4 (e) 1

EIGENVALUES OF THE ADJACENCY MATRIX OF CUBIC LATTICE GRAPHS

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Eigenvalues and Eigenvectors

Singular Value Inequalities for Real and Imaginary Parts of Matrices

A Design and a Code Invariant

Some constructions of integral graphs

JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson

Real symmetric matrices/1. 1 Eigenvalues and eigenvectors

Positive entries of stable matrices

AALBORG UNIVERSITY. Directed strongly regular graphs with rank 5. Leif Kjær Jørgensen. Department of Mathematical Sciences. Aalborg University

Mathematical foundations - linear algebra

4. Linear transformations as a vector space 17

Chapter 1. Matrix Algebra

NEW CLASSES OF SET-THEORETIC COMPLETE INTERSECTION MONOMIAL IDEALS

ALGEBRAIC MATCHING THEORY. C. D. Godsil 1

1 Last time: inverses

Linear Algebra I. Ronald van Luijk, 2015

Spectral densest subgraph and independence number of a graph 1

This section is an introduction to the basic themes of the course.

NORMS ON SPACE OF MATRICES

MATH 205 HOMEWORK #3 OFFICIAL SOLUTION. Problem 1: Find all eigenvalues and eigenvectors of the following linear transformations. (a) F = R, V = R 3,

Lecture Summaries for Linear Algebra M51A

Reconstruction and Higher Dimensional Geometry

AN EXAMPLE OF USING STAR COMPLEMENTS IN CLASSIFYING STRONGLY REGULAR GRAPHS

Spectral radius, symmetric and positive matrices

Linear Algebra Massoud Malek

arxiv: v1 [math.pr] 22 May 2008

1.10 Matrix Representation of Graphs

On the inverse of the adjacency matrix of a graph

MTH 2032 SemesterII

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Diagonalizing Matrices

Math 408 Advanced Linear Algebra

Math 108b: Notes on the Spectral Theorem

CONSTRUCTION OF DIRECTED STRONGLY REGULAR GRAPHS USING FINITE INCIDENCE STRUCTURES

Transcription:

Journal of Algebraic Combinatorics 6 (1997), 299 303 c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. A Characterization of Distance-Regular Graphs with Diameter Three EDWIN R. VAN DAM AND WILLEM H. HAEMERS Tilburg University, Department of Econometrics, P.O. Box 90153, 5000 LE Tilburg, The Netherlands Received May 25, 1995; Revised June 28, 1996 Abstract. We characterize the distance-regular graphs with diameter three by giving an expression for the number of vertices at distance two from each given vertex, in terms of the spectrum of the graph. Keywords: distance-regular graph, eigenvalues of graphs 1. Introduction It was proven by the second author [6] that if a graph G has the spectrum of a distanceregular graph with diameter three, and has the right number of vertices at distance two from each given vertex, then G is itself distance-regular. Here we drop the assumption that G has the spectrum of a distance-regular graph. We only assume that G is regular with four distinct eigenvalues and prove that G is distance-regular if and only if the number of vertices at distance two from each given vertex satisfies an expression in terms of the spectrum of G. To obtain our results we use quotient matrices of the adjacency matrix of the graph with respect to some partition of the vertices. The neighbourhood partition of some vertex x is the partition of the vertices into {x}, the set of neighbours of x, and the set of all other vertices. The distance partition of x is the partition of the vertices into X i, i = 0, 1,...,where X i is the set of vertices at distance i from x. The quotient matrix of the adjacency matrix with respect to some partition of the vertices is obtained by symmetrically partitioning the adjacency matrix according to the partition of the vertices and then taking the average row sums in the blocks of the partition. The partition is called regular if every block has constant row sum. We shall use the fact that the eigenvalues of the quotient matrix interlace the eigenvalues of the adjacency matrix. If the interlacing is tight then the partition is regular (cf. [5] or [1]). As general reference for distance-regular graphs we use the book of Brouwer et al. [1]. 2. The characterization To prove the main result we first need a characterization of strongly regular graphs. Lemma Let G be a connected regular graph on v vertices with eigenvalues k >λ 2 λ v. Let B be the quotient matrix with respect to the neighbourhood partition of an

300 VAN DAM AND HAEMERS arbitrary vertex x. Suppose B has eigenvalues k µ 2 µ 3. If for every vertex x one of the equalities λ 2 = µ 2 and λ v = µ 3 holds, then G is strongly regular. Proof: Let G have adjacency matrix A. Fix an arbitrary vertex x and suppose one of the equalities holds, say µ i is also an eigenvalue of A. Let V be the 3-dimensional subspace of R v of vectors that are constant over the parts of the neighbourhood partition of x. Then A has an eigenvector u = (u 0, u 1,...,u 1,u 2,...,u 2 ) T with eigenvalue µ i in V (cf. [5, Thm. 2.1.ii] or [1, Section 3.3]). Also the all-one vector j is an eigenvector (with eigenvalue k) of A in V. Furthermore A(1, 0,...,0) T = (0,1,...,1,0,...,0) T V. Since u, j and (1, 0,...,0) T are linearly independent vectors in V (otherwise u 1 = u 2, and applying A gives u 0 = u 2, which gives a contradiction), we have that AV V. So we have three linearly independent eigenvectors of A in V, and it follows that the neighbourhood partition of x is regular. So the number of common neighbours of x and a vertex y adjacent to x is independent of y. This holds for every x and since G is connected, it follows that this number is also independent of x, and so for every vertex the neighbourhood partition is regular with the same quotient matrix, proving that G is strongly regular. Theorem Let G be a connected regular graph on v vertices with four distinct eigenvalues, say with spectrum ={[k] 1,[λ 2 ] m 2,[λ 3 ] m 3,[λ 4 ] m 4 }. Let p be the polynomial given by p(x) = (x λ 2 )(x λ 3 )(x λ 4 ) = x 3 + p 2 x 2 + p 1 x + p 0 and let λ be given by λ = (k 3 + m 2 λ 3 2 + m 3λ 3 3 + m 4λ 3 4 )/vk. Then G is distance-regular if and only if for every vertex x the number of vertices k 2 at distance two from x equals f ( ) = k(k 1 λ) 2 (k λ)(λ + p 2 ) k p 1 + p 0. Proof: Suppose that G is distance-regular. Consider the quotient matrix C with respect to the distance partition of some arbitrary vertex x. Then 0 k 0 0 C = 1 λ k 1 λ 0 0 c k c b b, 0 0 k a a for some a, b and c. Note that λ = trace(a 3 )/vk equals the number of common neighbours of two adjacent vertices. Since C has eigenvalues k,λ 2,λ 3 and λ 4, it follows that the characteristic polynomial of C equals x k x k 0 (x k)p(x) = det(xi C)=det 1 x λ x k 0 0 c x k b 0 0 x k x a = (x k)(x 3 + (b + c λ a)x 2 + (λa ca bλ k + c)x + ka ca bk).

A CHARACTERIZATION OF DISTANCE-REGULAR GRAPHS 301 Now it follows that c = (k λ)(λ + p 2) k p 1 + p 0, k 1 λ and since k 2 c = k(k 1 λ), we have that k 2 = f ( ). Suppose now that k 2 = f ( ) for every vertex x. Let a, b and c be given by c = k(k 1 λ)/f ( ), a = k (λk + p 2 k + p 0 )/c and b = a + λ c + p 2. Then the matrix C as given above has eigenvalues k,λ 2,λ 3 and λ 4 (again, this follows by inspecting the characteristic polynomial). First suppose that f ( )<v 1 k, i.e., G has diameter three. We shall prove that the quotient matrix B with respect to the distance partition of x equals C, thus proving that G is distance-regular around x. Without loss of generality we assume that k >λ 2 >λ 3 >λ 4. Suppose that B has eigenvalues k µ 2 µ 3 µ 4. Since the eigenvalues of B interlace the eigenvalues of the adjacency matrix A of G, it follows that λ 2 µ 2 and µ 4 λ 4. Since G is a connected regular graph with four distinct eigenvalues, the number of triangles through x equals = 1 2 kλ (cf. [2]). From this it follows that B 22 = λ, and consequently B 23 = k 1 λ and B 32 = c. SoB=C+E, where E equals 0 0 0 0 E = 0 0 0 0 0 0 ε ε 0 0 δ δ for some ε and δ. To use inequalities for eigenvalues we want symmetric matrices. Therefore we multiply B, C and E from the left by K 1/2 and from the right by K 1/2, where K = diag(1, k, f ( ), v 1 k f ( )), to get B, C and Ẽ, respectively. Now the eigenvalues have not changed and B is symmetric, but to show that C (and consequently Ẽ) is symmetric, we have to prove that (v 1 k f ( ))(k a) = f ( )b. This follows since ((v 1 k f ( ))(k a) f ( )b)c = (v 1 k)(k a)c f ( )c(k a + b) = (v 1 k)(λk + p 2 k + p 0 ) k(k 1 λ)(k + λ + p 2 ) + k((k λ)(λ + p 2 ) k p 1 + p 0 ) = v(λk + p 2 k + p 0 ) (k 3 + p 2 k 2 + p 1 k + p 0 ) = 0. The last equation follows by taking the trace of the equation p(a) = (p(k)/v)j, where A is the adjacency matrix of G, and J is the all-one matrix (cf. [2, 7]). Let w 1 = K 1/2 (1, 1, 1, 1) T, then it is an eigenvector of both B and C with eigenvalue k. Let w i be an eigenvector of C with eigenvalue λ i, i = 2, 3, 4, such that {w 1,w 2,w 3,w 4 }is orthogonal. Let v i = K 1/2 w i, then v i is eigenvector of C with eigenvalue λ i, i = 1, 2, 3, 4. Now we shall prove that Ẽ = O or, equivalently, that ε = 0. Suppose that ε>0. Now Ẽ

302 VAN DAM AND HAEMERS is positive semidefinite, and so µ 2 wt 2 Bw 2 w T 2 w 2 = λ 2 + wt 2 Ẽw 2 w T 2 w 2 λ 2, and since λ 2 µ 2 it follows that µ 2 = λ 2 and Ẽw 2 = o. Then also Ev 2 = o, and so v 23 = v 24. Using that v 2 is eigenvector of C with eigenvalue λ 2, we find that v 2 = o, which is a contradiction. Similarly we find that v 4 = o by assuming that ε<0. So ε = 0 and B = C. Thus the distance partition is regular, and since this holds for every vertex, we find that G is distance-regular. Next suppose that f ( ) = v 1 k, i.e., G has diameter two. We shall show that this cannot occur. Again, consider the matrix C as given above. From the equation (v 1 k f ( ))(k a) = f ( )b it follows that b = 0. Let B be the quotient matrix with respect to the neighbourhood partition of an arbitrary vertex x, then 0 k 0 B = 1 λ k 1 λ. 0 c k c Let B have eigenvalues k,µ 2 and µ 3, then on one hand the eigenvalues of C are k,µ 2,µ 3 and a, and on the other hand they are k,λ 2,λ 3 and λ 4 and so we have one of the equalities needed to apply our lemma. So G is strongly regular, which is a contradiction with the fact that G has four distinct eigenvalues. This theorem proves a conjecture by the second author [6]. Although he uses a different expression for f ( ), it is easily proven that the expressions are the same for any regular graph with four eigenvalues (cf. [4]), that is, f ( ) = k(k 1 λ)2 θ 4 λ 2 k, where θ 4 = 1 ( k 4 + m 2 λ 4 2 vk + m 3λ 4 3 + m 4λ 4 ) 4. Proposition With the hypothesis of the previous theorem, if f ( ) is integral and f ( ) v 1 k, then k 2 f ( ). Proof: Suppose for some vertex x we have k 2 < f ( ). Consider the distance partition of x and change this partition by moving f ( ) k 2 vertices from the set of vertices at distance three to the set of vertices at distance two. By repeating the second part of the proof of the previous theorem, we find that the partition is regular, which is a contradiction. In a distance-regular graph µ is the number of common neighbours of two vertices at distance two. Here we find an easy way to see from the spectrum of a graph that it is distance-regular with diameter three and µ = 1. Corollary With the hypothesis of the theorem, G is distance-regular with µ = 1 if and only if k 1 λ = (k λ)(λ + p 2 ) k p 1 + p 0 (v 1 k)/k.

A CHARACTERIZATION OF DISTANCE-REGULAR GRAPHS 303 Proof: If G is distance-regular with µ = 1, then c = 1 in the proof of the theorem, and the equation follows and k(k 1 λ) = k 2 v 1 k. On the other hand, if c = 1 then f ( ) = k(k 1 λ), which is integral and by assumption at most v 1 k. So the proposition states that k 2 f ( ). Since every vertex at distance two from a given vertex has at least one common neighbour with that vertex, we have that k 2 k(k 1 λ). So k 2 =f( ) and it follows from the theorem that G is distance-regular, and now µ = c = 1. We conjecture that the proposition is also true without the conditions for f ( ), i.e., that for every connected regular graph with four distinct eigenvalues we have that the number of vertices k 2 at distance two from a given vertex is at least f ( ). More evidence for the conjecture is given by a bound by the first author [3], which for some cases coincides with f ( ), and in many other cases is just slightly worse. If G is a connected regular graph with four distinct eigenvalues k >λ 2 >λ 3 >λ 4 then for the number of vertices k 2 at distance two from a given vertex x we have that k 2 v 1 k v 1 + γ 2 v 1, where γ = j 1 i 1, j k λ i λ j λ i. The bound is tight for every vertex if and only if G is distance-regular such that the distance three graph G 3 of G is a strongly regular (v, k 3,λ,λ )graph for some λ. References 1. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik 3.18, Springer, Heidelberg, 1989. 2. E.R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226 228 (1995), 139 162. 3. E.R. van Dam, Bounds on special subsets in graphs, eigenvalues and association schemes, J. Alg. Combin. (to appear). 4. E.R. van Dam, Graphs with few eigenvalues An interplay between combinatorics and algebra, Thesis, Tilburg University, Center dissertation series 20, 1996. 5. W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226 228 (1995), 593 616. 6. W.H. Haemers, Distance-regularity and the spectrum of graphs, Linear Algebra Appl. 236 (1996), 265 278. 7. A.J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly 70 (1963), 30 36.