Constitutive models. Constitutive model: determines P in terms of deformation

Similar documents
Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros

Continuum Mechanics and the Finite Element Method

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Module 4 : Nonlinear elasticity Lecture 25 : Inflation of a baloon. The Lecture Contains. Inflation of a baloon

Simulation of elasticity, biomechanics and virtual surgery. Joseph M. Teran

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Conservation of mass. Continuum Mechanics. Conservation of Momentum. Cauchy s Fundamental Postulate. # f body

Finite Element Method in Geotechnical Engineering

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD

Eftychios D. Sifakis University of Wisconsin-Madison. Version 1.0 [10 July 2012] For the latest version of this document, please see:

Performance Evaluation of Various Smoothed Finite Element Methods with Tetrahedral Elements in Large Deformation Dynamic Analysis

2.1 Strain energy functions for incompressible materials

1 Useful Definitions or Concepts

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Fundamentals of Linear Elasticity

Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Simulation in Computer Graphics Elastic Solids. Matthias Teschner

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

Macroscopic theory Rock as 'elastic continuum'

Basic Equations of Elasticity

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr.

Nonlinear elasticity and gels

NUMERICAL MODELING OF INSTABILITIES IN SAND

International Journal of Pure and Applied Mathematics Volume 58 No ,

Elements of Rock Mechanics

A Numerical Study of Finite Element Calculations for Incompressible Materials under Applied Boundary Displacements

Comparison of Models for Finite Plasticity

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Comparative Study of Variation of Mooney- Rivlin Hyperelastic Material Models under Uniaxial Tensile Loading

The Plane Stress Problem

Natural States and Symmetry Properties of. Two-Dimensional Ciarlet-Mooney-Rivlin. Nonlinear Constitutive Models

Classification of Prostate Cancer Grades and T-Stages based on Tissue Elasticity Using Medical Image Analysis. Supplementary Document

A monolithic fluid structure interaction solver Verification and Validation Application: venous valve motion

Nonlinear Structural Materials Module

Discontinuous Galerkin methods for nonlinear elasticity

This introductory chapter presents some basic concepts of continuum mechanics, symbols and notations for future reference.

MATERIAL PROPERTIES. Material Properties Must Be Evaluated By Laboratory or Field Tests 1.1 INTRODUCTION 1.2 ANISOTROPIC MATERIALS

Hervé DELINGETTE. INRIA Sophia-Antipolis

Nonlinear Equations for Finite-Amplitude Wave Propagation in Fiber-Reinforced Hyperelastic Media

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

3.22 Mechanical Properties of Materials Spring 2008

FETI Methods for the Simulation of Biological Tissues

CIVL4332 L1 Introduction to Finite Element Method

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

A monolithic FEM solver for fluid structure

Modelling Anisotropic, Hyperelastic Materials in ABAQUS

Constitutive models: Incremental plasticity Drücker s postulate

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

Lecture 4 Implementing material models: using usermat.f. Implementing User-Programmable Features (UPFs) in ANSYS ANSYS, Inc.

Exercise: concepts from chapter 8

ENGN 2340 Final Project Report. Optimization of Mechanical Isotropy of Soft Network Material

Smoothed Particle Hydrodynamics for Nonlinear Solid Mechanics

Creasing Critical Strain Dependence on Surface Defect Geometry. EN234 Final Project

Mechanics of Biomaterials

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam

Deflection Analysis of Spur Polymer Gear Teeth

INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

MATERIAL ELASTIC HERRMANN INCOMPRESSIBLE command.

Constitutive Equations

Large Deformation of Hydrogels Coupled with Solvent Diffusion Rui Huang

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

A FAILURE CRITERION FOR POLYMERS AND SOFT BIOLOGICAL MATERIALS

Mechanical Properties of Polymer Rubber Materials Based on a New Constitutive Model

Module I: Two-dimensional linear elasticity. application notes and tutorial. Problems

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

Lecture 8. Stress Strain in Multi-dimension

Some New Elements for the Reissner Mindlin Plate Model

Duality method in limit analysis problem of non-linear elasticity

COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS

MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4

A Finite Element Model for Numerical Analysis of Sintering

Understand basic stress-strain response of engineering materials.

A new closed-form model for isotropic elastic sphere including new solutions for the free vibrations problem

MATERIAL ELASTIC ANISOTROPIC command

Physics of Continuous media

3-dimensional joint torque calculation of compression sportswear using 3D-CG human model

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

20. Rheology & Linear Elasticity

The Non-Linear Field Theories of Mechanics

INNOVATIVE FINITE ELEMENT METHODS FOR PLATES* DOUGLAS N. ARNOLD

SIMULATION OF MECHANICAL TESTS OF COMPOSITE MATERIAL USING ANISOTROPIC HYPERELASTIC CONSTITUTIVE MODELS

Spline-Based Hyperelasticity for Transversely Isotropic Incompressible Materials

In this section, thermoelasticity is considered. By definition, the constitutive relations for Gradθ. This general case

LITERATURE SURVEY SUMMARY OF HYPERELASTIC MODELS FOR PDMS

Proper Orthogonal Decomposition - Based Material Parameter Identification

ME FINITE ELEMENT ANALYSIS FORMULAS

Two problems in finite elasticity

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

A note on finite elastic deformations of fibre-reinforced non-linearly elastic tubes

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

The Finite Element Method for Computational Structural Mechanics

NET v1.0: A Framework to Simulate Permanent Damage in Elastomers under Quasi-static Deformations

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Integrating Tensile Parameters in Mass-Spring System for Deformable Object Simulation

Transcription:

Constitutive models Constitutive model: determines P in terms of deformation Elastic material: P depends only on current F Hyperelastic material: work is independent of path strain energy density function Ψ(F) analogous to f = U P = dψ/df P ij = dψ/df ij

Constitutive models Different choices of Ψ different models of elastic materials No deformation: Ψ(I) = 0 Rotation independence: Ψ(R F) = Ψ(F) Decompose F = R S. Ψ depends only on S, min when S = I

Corotated linear elasticity Quadratic in S: Ψ(F) = μ S I 2 + λ/2 tr 2 (S I) P(F) = 2 μ R (S I) + λ R tr (S I) μ, λ: Lamé parameters μ: resistance to stretching, shearing λ: resistance to volume change (because tr (S I) det F 1) Related to Young s modulus, Poisson s ratio

<latexit sha1_base64="ohztyd/nmmikh7ixafo7mxbaetw=">aaaduxicbdjba9swfabgnd6l627p9rgxstdi2bbsmnigfakdsrykhsxtiq5blmvhjsr7kpzvcp+j/zq9je3hte5dqtgtgi7pd45ukmozvdr3f+/0vdt3793ffbd38nhjj0/7+8/ovfzitky4y5m8ijaijaoy1vqzcpflgnjeyhm0+lt7+zpirtpxtzc5mxoucppqjlrnlfqfq17aqxgmemgzqsx4glwjrfg6egvd7wwkycjszdg6rbfamazqglwbb6ox/ye/8jcddoogcqaggael/d4sjdnccci0zkipwednem6q1bqzuu2fhsi5wiuukpknbejezc3mwbv8ztmxtdjpp6hhjut2gmsvknlkkznss9w2ovk/mxu6+tg3vosfjgjfl5qudoom1rchyyoj1qy0acks2r1cvet2xrs9461vmi8ktzd66yqm4vzfekf+4ixzjgitxpuxyb0tywfcdrjfcjraxlolwkhr7zuoy3bvlynxbswdllstrx1et3stb5m2pg6mbtxy8kinxw4et/hewzoqfo5b+/f1g7pxkpbhwdf3g8mkezi74av4cyygab/abhwbp2akmpgjfoe/4k934cfv6v1el/z2mp7nygt46h8df0er</latexit> <latexit sha1_base64="ohztyd/nmmikh7ixafo7mxbaetw=">aaaduxicbdjba9swfabgnd6l627p9rgxstdi2bbsmnigfakdsrykhsxtiq5blmvhjsr7kpzvcp+j/zq9je3hte5dqtgtgi7pd45ukmozvdr3f+/0vdt3793ffbd38nhjj0/7+8/ovfzitky4y5m8ijaijaoy1vqzcpflgnjeyhm0+lt7+zpirtpxtzc5mxoucppqjlrnlfqfq17aqxgmemgzqsx4glwjrfg6egvd7wwkycjszdg6rbfamazqglwbb6ox/ye/8jcddoogcqaggael/d4sjdnccci0zkipwednem6q1bqzuu2fhsi5wiuukpknbejezc3mwbv8ztmxtdjpp6hhjut2gmsvknlkkznss9w2ovk/mxu6+tg3vosfjgjfl5qudoom1rchyyoj1qy0acks2r1cvet2xrs9461vmi8ktzd66yqm4vzfekf+4ixzjgitxpuxyb0tywfcdrjfcjraxlolwkhr7zuoy3bvlynxbswdllstrx1et3stb5m2pg6mbtxy8kinxw4et/hewzoqfo5b+/f1g7pxkpbhwdf3g8mkezi74av4cyygab/abhwbp2akmpgjfoe/4k934cfv6v1el/z2mp7nygt46h8df0er</latexit> <latexit sha1_base64="ohztyd/nmmikh7ixafo7mxbaetw=">aaaduxicbdjba9swfabgnd6l627p9rgxstdi2bbsmnigfakdsrykhsxtiq5blmvhjsr7kpzvcp+j/zq9je3hte5dqtgtgi7pd45ukmozvdr3f+/0vdt3793ffbd38nhjj0/7+8/ovfzitky4y5m8ijaijaoy1vqzcpflgnjeyhm0+lt7+zpirtpxtzc5mxoucppqjlrnlfqfq17aqxgmemgzqsx4glwjrfg6egvd7wwkycjszdg6rbfamazqglwbb6ox/ye/8jcddoogcqaggael/d4sjdnccci0zkipwednem6q1bqzuu2fhsi5wiuukpknbejezc3mwbv8ztmxtdjpp6hhjut2gmsvknlkkznss9w2ovk/mxu6+tg3vosfjgjfl5qudoom1rchyyoj1qy0acks2r1cvet2xrs9461vmi8ktzd66yqm4vzfekf+4ixzjgitxpuxyb0tywfcdrjfcjraxlolwkhr7zuoy3bvlynxbswdllstrx1et3stb5m2pg6mbtxy8kinxw4et/hewzoqfo5b+/f1g7pxkpbhwdf3g8mkezi74av4cyygab/abhwbp2akmpgjfoe/4k934cfv6v1el/z2mp7nygt46h8df0er</latexit> <latexit sha1_base64="ohztyd/nmmikh7ixafo7mxbaetw=">aaaduxicbdjba9swfabgnd6l627p9rgxstdi2bbsmnigfakdsrykhsxtiq5blmvhjsr7kpzvcp+j/zq9je3hte5dqtgtgi7pd45ukmozvdr3f+/0vdt3793ffbd38nhjj0/7+8/ovfzitky4y5m8ijaijaoy1vqzcpflgnjeyhm0+lt7+zpirtpxtzc5mxoucppqjlrnlfqfq17aqxgmemgzqsx4glwjrfg6egvd7wwkycjszdg6rbfamazqglwbb6ox/ye/8jcddoogcqaggael/d4sjdnccci0zkipwednem6q1bqzuu2fhsi5wiuukpknbejezc3mwbv8ztmxtdjpp6hhjut2gmsvknlkkznss9w2ovk/mxu6+tg3vosfjgjfl5qudoom1rchyyoj1qy0acks2r1cvet2xrs9461vmi8ktzd66yqm4vzfekf+4ixzjgitxpuxyb0tywfcdrjfcjraxlolwkhr7zuoy3bvlynxbswdllstrx1et3stb5m2pg6mbtxy8kinxw4et/hewzoqfo5b+/f1g7pxkpbhwdf3g8mkezi74av4cyygab/abhwbp2akmpgjfoe/4k934cfv6v1el/z2mp7nygt46h8df0er</latexit> Material parameters Conversion from Young s modulus k, Poisson s ratio ν: µ = k 2(1 + ), = k (1 + )(1 2 ) [Smith et al. 2018]

Other constitutive models St. Venant Kirchhoff (with E = ½ (F T F I)): Easier to compute: no need for polar decomposition Ψ, P polynomial in F Ψ(F) = μ E 2 + λ/2 tr 2 E StVK corotated linear Poor behaviour in compression 1

Other constitutive models Neo-Hookean (with C = F T F, I C = tr C, J = det F): Ψ(F) = μ/2 (I C 3) μ log J + λ/2 (log J) 2 Correctly models volume change using J = det F Good for nearly incompressible materials (e.g. rubber, flesh) StVK corotated linear Undefined under collapse, inversion (J 0) Stable neo-hookean [Smith et al. 2018] 1 neo-hookean

Anisotropy All these materials are isotropic: independent of direction of stretching Ψ(F) = Ψ(F Q) Ψ(F) = Ψ(U Σ V T ) = Ψ(Σ): Ψ only depends on principal strains Equivalently, only depends on invariants of C = F T F Examples of anisotropic materials: woven fabrics, composites [Kharevych et al. 2009]

From theory to simulation State φ(x), φ (X) Deformation gradient F(X) = dφ/dx Stress P(F) = dψ/df Force density ρ φ = div P + f ext (everything in terms of material space!) How to discretize φ(x)? How to compute F? How to compute div P?

Meshes Divide space into elements (usually triangles, tetrahedra), put samples at vertices (a.k.a nodes) Reconstruction: linear / polynomial within each element Differentiation: naively, gradient only defined in element interior Elements should be well-shaped : close to regular Software to generate mesh for given shape: Triangle, TetGen

Meshes for elasticity X i x i Create triangulated mesh in material space Each vertex stores fixed X i, varying x i = φ(x i ), v i = φ (X i ) Each element stores indices of vertices i 1, i 2, i 3 (, i 4 ) Reconstruct φ(x) by piecewise linear interpolation. (Other shapes e.g. quads, higher-order interpolation also possible)

Shape functions Interpolation can be expressed as linear combination of shape functions: f(x) = f 1 N 1 (x) + f 2 N 2 (x) + + f n N n (x) where N i (x i ) = 1, N i (x j ) = 0 for j i = f i f(x) N i (x)

Shape functions In particular, φ(x) = x 1 N 1 (X) + x 2 N 2 (X) + F(X) = x 1 dn 1 /dx + x 2 dn 2 /dx + Piecewise linear interpolation F, P constant on each element But what is div P? Zero in element interior, undefined on element boundaries

The finite element method FEM in graphics: Sifakis and Barbič, Part 1, Ch 4: Discretization FEM theory: Bathe, Finite Element Procedures (especially Ch 3.3, 4.2)