Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Similar documents
ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices

Hall Effect. Sergio O. Valenzuela. ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona.

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession

Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information

Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves

Spin injection. concept and technology

Mesoscopic Spintronics

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Room-Temperature Electron Spin Transport in a Highly Doped Si Channel. AIT, Akita Research Institute of Advanced Technology, Akita , Japan

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

Spin injection and the local Hall effect in InAs quantum wells

SUPPLEMENTARY INFORMATION

Spin Circuits: Bridge from Science to Devices

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu

SUPPLEMENTARY INFORMATION

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Magnon-drag thermopile

Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University

Physics and applications (I)

Citation for published version (APA): Filip, A. T. (2002). Spin polarized electron transport in mesoscopic hybrid devices s.n.

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

Recent developments in spintronic

Spin Torque and Magnetic Tunnel Junctions

Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island Zaffalon, M; van Wees, Bart

SUPPLEMENTARY INFORMATION

introduction: what is spin-electronics?

SUPPLEMENTARY INFORMATION

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

Supplementary material: Nature Nanotechnology NNANO D

Molecular Spintronics using -Electron Molecules

SUPPLEMENTARY INFORMATION

arxiv: v3 [cond-mat.mtrl-sci] 11 Aug 2008

Observation of the intrinsic inverse spin Hall effect in Ni 80 Fe 20. Yuichiro Ando, Teruya Shinjo and Masashi Shiraishi * #

Fundamental concepts of spintronics

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

An Overview of Spintronics in 2D Materials

Scanning Probe Microscopy (SPM)

X-ray Imaging and Spectroscopy of Individual Nanoparticles

Atomistic Modeling of Phase-engineered MoS2 Channel for the Decananometer Scale Digital Switches

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency

Carbon based Nanoscale Electronics

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Ferromagnetism and Anomalous Hall Effect in Graphene

Spin Orbit Coupling (SOC) in Graphene

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

MRAM: Device Basics and Emerging Technologies

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

single-electron electron tunneling (SET)

Supporting Online Material for

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

2 Title: "Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel

Electron spins in nonmagnetic semiconductors

Spin Currents in a 2D Electron Gas

Nanosecond spin relaxation times in single layer graphene spin. valves with hexagonal boron nitride tunnel barriers

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films

University of Groningen. Taking topological insulators for a spin de Vries, Eric Kornelis

Magnetic bubblecade memory based on chiral domain walls

MSE 7025 Magnetic Materials (and Spintronics)

Spring Semester 2012 Final Exam

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

Wouldn t it be great if

EECS130 Integrated Circuit Devices

Spintronics and thermoelectrics in exfoliated and epitaxial graphene van den Berg, Jan Jasper

SUPPLEMENTARY INFORMATION

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Giant Magnetoresistance

arxiv: v1 [cond-mat.mes-hall] 6 Jul 2012

Spin injection and absorption in antiferromagnets

Concepts in Spin Electronics

Spin Injection into a Graphene Thin Film at Room Temperature

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Supporting Information

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Theory of Electrical Characterization of Semiconductors

TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ

10. Magnetoelectric Switching

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

Spin transport and relaxation mechanism in disordered organic film

SUPPLEMENTARY INFORMATION

Contact Engineering of Two-Dimensional Layered Semiconductors beyond Graphene

Transcription:

Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu 7 th NCN - - NEEDS Summer School July 24, 2014 1

Spin Transport in Lateral Structures V Spin Injection Contacts & Interfaces Spin Detection Non- local Measurements Spin Relaxation Transport Channel Spin Manipulation Spin Transfer Torque 2

1. Spin Injection! Choices of Contacts and Interfaces 3

Spin Injection Contact Choices E E E D D D D D E F E F E F Paramagnetic Contact P = 0 Ferromagnetic Contact P < 1 Half Metal Contact P = 1 Electron Spin Polarization: P = D (E F ) D (E F ) D (E F ) + D (E F ) 4

Spin Injection Ferromagnetic Properties 5µm(L) 5µm(W) 30nm(t) NiFe (Py) Film H 4µm(L) 800nm(W) 20nm(t) NiFe (Py) Bar H 0 AFM Topography Image MFM Phase Change Image H 5µm 0 5µm 0 Dimension Dependent Domain Structures 5µm 0 5µm 5

Spin Injection Ferromagnetic Properties 4µm$ 6

Spin Injection Ferromagnetic Properties Coercive Field of Py Nanomagnets from Spin Valve Measurements Switching Field (mt) 25 20 15 10 5 W = 100nm W = 300nm FM Width H C! FM Thickness H C 0 0 5 10 15 20 25 30 35 40 45 Py Thickness (nm) C.- C. Lin, et al., Nano Lett., 13, 5177 (2013) 7

Spin Injection Efficiency F µ (r C, P σc ) µ µ (r F, P σf ) µ Int (r N, P j ) N P j = r C P σc + r F P σ F r F + r C + r N r C = 0,r F << r N P j r F r N P σ F P σ F r F, Spin resistance in FM; P σf, Conductivity polarization in FM r N, Spin resistance in channel; Pj, Current polarization r C, Interface resistance; P σc, Conductivity polarization at Interface In the case of, r C = 0,r F r N P j = r F r N P σ F = λ F λ N σ N σ F P σ F If λ F = 10nm,λ N = 300nm, σ N σ F = 0.01,P σ F = 60% P j = 0.02% Ohmic Contact (r F = λ F σ F,r N = λ N σ N ) r C r F,r N P j P σc Resistive Contact / Spin Filter I. Zutic, et al., Reviews of Modern Physics, 76, 323 (2004) 8

Tunnelling Barrier Interface Control Thin Mismatched Conductivity Al thickness Optimal Thickness Thick Limited Current SiO 2 20 nm 5 4 Pd contact w/o Al 2 O 3 Py contact w/ 0.6nm Al 2 O 3 Py contact w/ 1.0nm Al 2 O 3 Al 2 O 3 /Graphene I Ds [µa/µm] 3 2 200nm R A =0.4 nm 0 nm 1 0-40 -20 0 20 40 AFM V G -V Dirac [V] 9

Tunnelling Barrier Interface Control 2 Py contact w/ 0.6nm Al 2 O 3 I Ds [µa/µm] 1 0 5-40 -20 0 20 40 V G -V Dirac [V] 2- Probe graphene I,V 90nm SiO 2 Si Al 2 O 3 R c [kω] 6 5 4 3 Tunnelling Resistance ρ? [kω/?] 4 3 2 1 4- Probe graphene + V - 90nm SiO 2 Si Al 2 O 3 2 1-40 -20 0 20 40 V G -V Dirac [V] 0-40 -20 0 20 40 V G -V Dirac [V] 10

Tunneling Barrier Interface Control Well Controlled Interface for Spin Injection into Graphene 11

2. Spin Detection! Non- local Spin Valve Measurements 12

Non- local Spin Valve Device V 13

Why Non- local? V" Local"Spin"Valve"" Local Local V" Non- local Non- local Non&local"Spin"Valve" Spin valve measurements of two Py/Cu/Py devices from reference: PRB, 67, 085319 (2003) Non- local Spin Valve Measurement: Fully separate charge current Less sensitive to AMR, Hall effect, and resistance fluctuations 14

Hanle Spin Precession Measurements Z Y B Field (z) V" X V(B z ) = ±I P j 2 e 2 NS 0 P(t)cos(ω Lt)exp( t /τ sf )dt ω L = gµ B B /! P(t) = 1 4π Dt exp( L2 / 4Dt) P j, τ sf, λ sf = Dτ sf F. Jedema, et al., Nature, 416, 713 (2002) 15

Graphene Non- local Spin Valve Device Injector: Py [300nm(w) 25nm(t) 2µm(l)] Detector: Py [400nm(w) 25nm(t) 2µm(l)] Interface Barrier: Oxidized 0.6nm Al B field X graphene - Au V + Py Py Au Al 2 O 3 Non- FM Contact: 30nm thick Ti/Pd/Au! Graphene Channel Width: W ch =900nm Spacing Between Py Contacts: L ch =300nm 90nm SiO 2 Si Gao, Y. et al., IEDM, 80-83 (2012) 16

Spin Valve Measurements in Graphene Z Y X X B field (Y) graphene Au - V + Py Py 90nm SiO 2 Si Au Injector Detector Parallel 400nm 300nm Room Temperature Anti- parallel Gao, Y. et al., IEDM, 80-83 (2012) 17

Spin Valve Measurements in Graphene Room Temperature Operation 0.5µm 0.42µm 0.2µm 0.4µm 1 2 4 3 B field X graphene + 90nm SiO 2 Si V Py Py Py Py - Al 2 O 3 (a) µ µ µ (b) µ µ µ Another Type of Non- local Spin Devices: All four electrodes are ferromagnetic (c) µ µ (d) µ µ Gao, Y. et al., IEDM, 80-83 (2012) 18 µ µ

Spin Valve Measurements in Metal (Py/Cu/Py) Py1: 500nm(w) 40nm(t) 2µm Py2: 100nm(w) 40nm(t) 14µm Spacing between Py: L ch =250nm Minor Loop F. Jedema, et al., Nature, 410, 345 (2001) 19

Junction Size Dependent Spin Valve Signal S j1 =1µm 200nm R~50µΩ S J1 S J2 S j2 =200nm 200nm R~120µΩ S j3 =60nm 200nm R~300µΩ S j4 =30nm 200nm R~600µΩ S J =l p w I+ I- w l p Py Cu V- S J3 S J4 ΔR R Py R Cu = λ Py / (σ PyS J ) λ Cu / (σ Cu S Cu ) 1 S J V+ T. Kimura, et al., Phys. Rev. B, 73, 132405 (2006) 20

3. Spin Relaxation! Choice of Spin Transport Channel 21

Spin Transport in Single Layer Graphene λ S =1.5~2µm Tombros, N. et al., Nature, 448, 571 (2007) λ S =4.5µm λ S =4.7µm 22 Zomer, P.J. et al., PRB, 86, 161416 (2012) Guimaraes, M. et al., Nano Lett., 12, 3512 (2012)

Extraction of Spin Diffusion Length and Polarization X graphen - Au V + Py P Au Al 2 O 3 90nm SiO 2 S R S = R i R P J P F 2 R F 4R N e L/λ S ( N 2 1 P + R N ) 2 J 1 P F 2 i=1 (1+ i=1 2 R i 2 R F R N 2 1 P + R N J 1 P ) 2 e 2 L/λ S F Spin Resistances: Interface Resistances: Polarization: R N = ρ Nλ S W Ch P J R i : R 1 = R 2 P F R F = ρ Fλ F R i R N S J R F R N S. Takahashi, et al., Phys. Rev. B., 67, 052409 (2003) 23

Extraction of Spin Diffusion Length and Polarization R S 4R N P J 2 ( R i R N ) 2 e L/λ S (1+ 2 R i R N ) 2 e 2 L/λ S Room Temperature: λ S ~ 4 µm; P J ~ 3.5% ρ Nλ S W Ch P 2 J e L/λ S R S(λ S,P J ) Same graphene materials Same device structures Gao, Y. et al., IEDM, 80-83 (2012) 24

Extraction of Spin Diffusion Length and Polarization 0.4µm 0.5µm 0.42µm 0.2µm 0.4µm Py 3.6µm Py Py 3.6µm Py R S ρ Nλ S W Ch 90nm SiO 2 Si P 2 J e L/λ S Room Temperature: R s [Ω] 0.5 0.4 0.3 0.2 0.1 λ S ~ 5.1 µm; P J ~ 4.0% 0 2 4 6 8 10 L [µm] 25

Optimized Graphene Spin Devices Tunability in Graphene 1) Graphene Layer Number 2) Carrier Concentration λ S [µm] 5 4 3 2 1 0 R S ρ Nλ S W Ch graphene + P 2 J e L/λ S 1 3 5 7 9 11 13 # of layers V Py Py Au 90nm SiO 2 Si V G = 40V, V Dirac = - 20V Larger spin diffusion length found in multi- layer graphene Au - Al 2 O 3-0.8-1 -1.2 1 layer -1.4 0 5 10 15 20 0.3 0.1-0.1 0 5 10 15 20 2.1 12 layer 1.9 1.7 R s =0.44Ω 0.5 7 layer R s =0.38Ω R s =0.04Ω 1.5 0 5 10 15 20 26

Optimized Graphene Spin Devices Tunability in Graphene 1) Graphene Layer Number 2) Carrier Concentration 7 layer graphene + Au V Py Py Au 90nm SiO 2 Si - Al 2 O 3 5 4 Larger spin diffusion length is found at higher carrier concentration T"="300K" I λ S [µm] 3 2 1 V + V - 0-40 -20 0 20 40 Vg [V] 27

Spin Transport in Metal Co/Al 2 O 3 /Al/Al 2 O 3 /Co Room Temperature λ S ~ 350±50nm P J ~ 8±1% M. Costache, et al., Phys. Rev. B, 74, 012412 (2006) Py/Cu/Py Room Temperature λ S ~ 350±50nm P J ~ 2% F. Jedema, et al., Nature, 410, 345 (2001) 28

4. Spin Manipulation! Lateral Spin Transfer Torque 29

Spin Current Induced Magnetization Reversal in Py/Cu/Py W Cu =170nm, t Cu =65nm S Py, inj =80nm 170nm, t Py =20nm S Py, det =75nm 170nm, t Py =4nm L ch =270nm Achieved at 10K Larger spin valve signals due to: 1. Ultra- clean interface to minimize interfacial scattering 2. ΔR R Py R Cu S Cu S Py 1 P AP: Positive Current AP P: Negative Current T. Yang, et al., Nature Physics, 4, 851 (2008) 30

Spin Transfer Torque in Multi- layer Graphene C.- C. Lin, et al., Nano Lett., 13, 5177 (2013) Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) Spin Valve Measurement at 77k Switching field v.s. Py Thickness Detector [100nm (W) x 5nm (H)] Switching Injector [ 300nm (W) x 25 nm (H) ] Switching 31

Magnetic Field Assisted Spin Torque Measurement + V - Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) Spin Valve Measurement at 77k B =- 50mT + V - B =+4mT Detector [100nm (W) x 5nm (H)] Switching 33

Magnetic Field Assisted Spin Torque Measurement Torque B =+4mT P I + - V P R [Ω] Pulse I+ AP B R [Ω] AP Time [sec] 4 5 14 20 B [mt] P à AP Switching B =+4mT P I + V - P No Torque R [Ω] Pulse I+ Time [sec] AP B R [Ω] 4 5 14 20 B [mt] AP 35

Magnetic Field Assisted Spin Torque Measurement Torque V G = +40V, B = +4mT, T = 77k P à AP +4.5mA pulse No Torque +4mA pulse 36

Magnetic Field Assisted Spin Torque Measurement V G = +40V, B = +4mT, T = 77k B =+4mT P + V - P R [Ω] No Torque Pulse I- Time [sec] AP B R [Ω] 4 5 14 20 B [mt] AP - 4.5mA pulse 37

Magnetic Field Assisted Spin Torque Measurement I + V - Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) B =+10mT Spin Valve Measurement at 77k I + V B =- 4mT Detector [100nm (W) x 5nm (H)] Switching 38

Magnetic Field Assisted Spin Torque Measurement I + V - Injector: 300nm (W) x 25 nm (H) Detector: 100nm (W) x 5nm (H) B =+10mT Spin Valve Measurement at 77k I + V B =- 4mT Detector [100nm (W) x 5nm (H)] Switching 39

Magnetic Field Assisted Spin Torque Measurement Torque V G = +40V, B = +4mT, T = 77k AP à P - 4.5mA pulse No Torque - 4mA pulse 40

Non- local Resistance vs. DC current at 77K Critical current 4.5mA for both Pà AP and APà P switching No spin torque observed for magnetic field < 4mT B assist =4mT B assist =-4mT V G =40V, T=77K C.- C. Lin, et al., Nano Lett., 13, 5177 (2013) 41

Control Experiment - - Current Induced Heating +4mA pulse Coercive Field Detector: ±3.5mT Injector: ±22mT! B ext =+2.5mT - 4mA pulse Only positive current pulse results in Pà AP switching evidence to exclude switching by current induced heating! 42

Control Experiment Oersted Field Spin Torque Effect O e r s t e d F i e l d Effect Switching Direction Magnetization Directions of I n j e c t o r a n d Detector Assisting Magnetic Field P AP +2.5mT +4mA P AP -2.5mT +4mA AP P -2.5mT -4mA P AP +2.5mT +4mA P AP -2.5mT -4mA AP P -2.5mT -4mA Current Pulse Coercive Field Detector: ±3.5mT Injector: ±22mT! B ext =- 2.5mT - 4mA pulse Only positive current pulse results in Pà AP switching evidence to exclude switching by Oersted field! 43

Asymmetric Contacts for Graphene Spin Valve L =0.4µm, W =1.0µm ρ =0.8kΩµm, λ S ~4µm, P C ~4% R c =2kΩ (with tunneling barrier) R c =1kΩ (without tunneling barrier) C.- C. Lin, et al., ACS Nano, 8, 3807 (2014) Noise Reduction: 8.4% à 4.5% 44

Improving Spin Transfer Torque Critical charge current for spin transfer torque at B =1mT:!! J double =45mA/µm 2! J single =33mA/µm 2 C.- C. Lin, et al., ACS Nano, 8, 3807 (2014) 45

Acknowledgements Students: Chia- Ching Lin, Yunfei Gao, Ashish V. Penumatcha, Vinh Quang Diep! Collaborators: Prof. Appenzeller, Prof. Da a! Funding Support: NRI INDEX Center, NCN NEEDS 46