Computational Characterization of Nylon 4, a Biobased and Biodegradable Polyamide Superior to Nylon 6

Similar documents
Electronic Supplementary Information (ESI) for. Stereoselective photoreaction in P-stereogenic dithiazolylbenzo[b]phosphole chalcogenides

An Introduction to Polymer Physics

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Analytical Methods for Materials

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

SUPLEMENTARY INFORMATIONS

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Supplementary Information

PART 1 Introduction to Theory of Solids

Supporting Information

Chapter 2: Elasticity

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids

Supporting information

Supporting Information

Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description. Igor Dobovšek

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Supporting Information. Structural Variation Determined by Length-matching Effects: Towards the Formation of Flexible Porous Molecular Crystal

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: Competing routes to C C bond formation

Two-dimensional Phosphorus Carbide as Promising Anode Materials for Lithium-ion Batteries

Structure Report for J. Reibenspies

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy

Introduction to Seismology Spring 2008

Crystallographic Symmetry. Jeremy Karl Cockcroft

PHYSICAL PROPERTIES OF CRYSTALS

Supplementary Information

Homework 4 Due 25 October 2018 The numbers following each question give the approximate percentage of marks allocated to that question.

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

The vibrational spectroscopy of polymers

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Quadratic and cubic monocrystalline and polycrystalline materials: their stability and mechanical properties

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Tensorial and physical properties of crystals

Exercise: concepts from chapter 8

Synthesis and Structure of 7H-12-Oxa-3,7-diazapleiadenes

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Crystal structure of DL-Tryptophan at 173K

Performance of B3PW91, PBE1PBE and OPBE Functionals in Comparison to B3LYP for 13C NMR Chemical Shift Calculations

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Structural Insights into Bound Water in. Crystalline Amino Acids: Experimental and Theoretical 17 O NMR

Selective Reduction of a Pd Pincer PCP Complex to Well- Defined Pd(0) Species

Elastic Deformation Mechanics of Cellulose Nanocrystals

CH 2 = CH - CH =CH 2

Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; differentiation; integration; vectors.

Electron Density at various resolutions, and fitting a model as accurately as possible.

Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Distinguishing weak hydrogen bonding with NMR

3.032 Problem Set 4 Fall 2007 Due: Start of Lecture,

Supplementary Material

The Azido Gauche Effect Implications for the Conformation of Azidoprolines

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

SUPPLEMENTARY INFORMATION

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2002

Controllable monobromination of perylene ring system: synthesis of bay-functionalized perylene dyes

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model.

Lecture 4 Honeycombs Notes, 3.054

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy

Department of Chemistry, Indian Institute of Technology, Kharagpur , India

Synthesis and Unique Optical Properties. of Selenophenyl BODIPYs. and Their Linear Oligomers

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Some approaches to modeling of the effective properties for thermoelastic composites

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize.

SUPPORTING INFORMATION. Stereomutation of Conformational Enantiomers of 9-Isopropyl-9-formyl fluorene and Related Acyl Derivatives.

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

Macromolecular X-ray Crystallography

Electronic Supporting Information

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure

Road map (Where are we headed?)

Combined Analysis of 1,3-Benzodioxoles by Crystalline Sponge X-ray Crystallography and Laser Desorption Ionization Mass Spectrometry

NMR Shifts. I Introduction and tensor/crystal symmetry.

Downloaded from ijcm.ir at 21: on Thursday March 7th 2019

Calculation of single chain cellulose elasticity using fully atomistic modeling

Introduction to Finite Element Analysis Using Pro/MECHANICA Wildfire 5.0

NMR and IR spectra & vibrational analysis


Effect of the cation on the stability of cation-glyme complexes and their interactions with the [TFSA] - anion

Supplementary Material. Physisorption of Hydrophobic and Hydrophilic 1-alkyl-3- methylimidazolium Ionic Liquids on the Graphite Plate Surface

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Supporting Information

Simulation of the NMR Second Moment as a Function of Temperature in the Presence of Molecular Motion. Application to (CH 3

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Supporting Information (Online Material) for

Stereochemistry of Molecules in Crystals (part 1, 2)

The Abstraction of Iodine from Aromatic Iodides by Alkyl Radicals. Steric and Electronic Effects 1

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers

Colloque National sur les Techniques de Modélisation et de Simulation en Science des Matériaux, Sidi Bel-Abbès Novembre 2009

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR

Supporting Information

MD simulation: output

COPPER(I) COMPLEXES WITH N-ALLYLAZOMETHINES. IN STRUCTURE FORMATION OF 2CuBr R CH=N C 3 H 5 (R = 2-FURYL) AND CuBr R CH=N C 3 H 5 (R = PHENYL)

Transcription:

Supporting Information Computational Characterization of Nylon 4, a Biobased and Biodegradable Polyamide Superior to Nylon 6 Yuichiro Fukuda and Yuji Sasanuma Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan Figure S1. Molecular weight distribution of the nylon 4 sample used in this study. S1

Table S1. 13 C NMR Chemical Shifts of Conformers of the Model Compound, ABAMA, Evaluated from MO Calculations a conformer δ i k b (ppm) bond chemical species k 3 4 5 HNC=O ω CH β 2 CH α 2 CH 2 HNC=O gas 1 t t t 173.9135 46.4051 28.2943 36.5915 176.8719 2 t g + g + 173.7832 40.8084 30.6545 36.0875 174.1922 3 t g g + 174.2290 47.9885 27.3902 40.0637 181.6506 4 g + t t 173.4437 44.8944 33.7171 39.9360 176.7148 5 g + t g + 176.9749 46.0270 28.7512 37.2951 175.3528 6 g + t g 173.6031 43.3592 29.7211 36.8787 176.8504 7 g + g + t 173.5425 46.8200 32.0104 40.4142 176.9259 8 g + g + t 173.1857 43.6120 33.7603 40.6507 176.5110 9 g + g + g + 174.3774 43.8089 26.5642 33.3929 177.8080 10 g + g + g + 173.5625 40.4052 31.6140 38.3171 178.8105 11 g + g + g 173.3026 44.6341 32.8329 42.4355 180.2281 12 g + g t 174.2839 41.7282 33.4873 38.4436 177.9228 13 g + g t 174.2940 41.7391 33.5010 38.4771 177.8924 14 g + g g + 176.3471 44.8825 32.4588 39.3313 180.9882 15 g + g g 177.2895 43.3590 35.4151 37.3163 178.3155 average, < δ i > 176.4187 44.1049 33.3393 38.1765 179.2844 2,2,2-trifluoroethanol 1 t t t 178.1920 46.7026 28.3846 36.9040 180.7097 2 t g + g + 178.2390 41.5699 29.4948 37.6419 179.3136 3 t g g + 177.8612 48.4756 27.4363 40.2773 184.2477 4 g + t t 177.6938 45.1159 34.0629 40.4974 180.4926 5 g + t g + 180.4616 45.8477 28.3613 38.9216 180.4441 6 g + t g 177.8124 44.1771 30.3456 37.2735 179.9678 7 g + g + t 178.0633 46.8262 32.6491 41.0908 181.0202 8 g + g + t 177.6604 43.7242 34.1485 40.9532 180.7593 9 g + g + g + 178.8039 44.4989 27.4848 33.8500 181.0278 10 g + g + g + 177.3925 41.5772 31.8804 38.4450 181.2281 11 g + g + g 177.5338 44.7751 33.2327 42.4900 184.0302 12 g + g t 178.3741 42.2622 33.4061 38.9209 181.3354 13 g + g t 178.3818 42.2723 33.4208 38.9520 181.3012 14 g + g g + 179.6048 45.4477 32.8887 40.6706 184.4654 15 g + g g 180.6242 43.3885 35.1449 39.0838 182.8335 average, < δ i > 179.3005 44.9210 32.1506 39.4077 182.8062 a At the B3LYP/6-311++G(3df,3pd) level. b Relative to δ (0 ppm) of tetramethylsilane (TMS). The chemical shift of TMS was also calculated at the B3LYP/6-311++G(3df,3pd) level. S2

Table S2. Fractional Coordinates of the α Form of Nylon 4, Optimized by the B3LYP D Calculations under the Periodic Boundary Condition a atom x/a y/b z/c C 0.060 0.469 0.012 C 0.042 0.268 0.024 C 0.048 0.127 0.019 C 0.053 0.167 0.009 C 0.063 0.309 0.472 C 0.042 0.010 0.472 C 0.047 0.096 0.496 C 0.055 0.111 0.500 C 0.458 0.005 0.028 C 0.453 0.101 0.004 C 0.437 0.196 0.028 C 0.445 0.106 0.000 C 0.458 0.273 0.476 C 0.452 0.378 0.481 C 0.440 0.474 0.488 C 0.447 0.328 0.491 N 0.019 0.073 0.011 N 0.015 0.205 0.496 N 0.485 0.299 0.004 N 0.481 0.423 0.489 O 0.186 0.171 0.002 O 0.190 0.107 0.484 O 0.310 0.397 0.016 O 0.314 0.325 0.498 H 0.151 0.315 0.327 H 0.106 0.015 0.431 H 0.128 0.011 0.324 H 0.132 0.100 0.349 H 0.106 0.102 0.403 H 0.124 0.204 0.495 H 0.368 0.377 0.332 H 0.128 0.272 0.172 H 0.131 0.372 0.168 H 0.112 0.380 0.077 H 0.121 0.314 0.424 H 0.351 0.469 0.342 H 0.382 0.470 0.408 H 0.125 0.074 0.006 H 0.379 0.191 0.076 H 0.349 0.190 0.173 H 0.394 0.106 0.097 H 0.368 0.105 0.151 H 0.372 0.007 0.176 H 0.394 0.010 0.069 H 0.376 0.301 0.005 H 0.118 0.034 0.092 H 0.149 0.035 0.158 H 0.372 0.276 0.328 H 0.394 0.263 0.428 H 0.388 0.384 0.423 H 0.106 0.259 0.072 H 0.375 0.421 0.494 a The monoclinic cell of space group P2 1. The lattice constants are a = 9.50 Å, b = 12.36 Å, c = 7.39 Å, and β = 111.6. The unit cell includes eight monomeric units. S3

Table S3. Comparison of Experimental and Calculated Cartesian Coordinates of Atoms in the Unit Cell of the α Form of Nylon 4 experiment a calculation b x (Å) y (Å) z (Å) x (Å) y (Å) z (Å) c (Å) C 0.386 6.120 0.051 0.535 6.561 0.106 0.469 C 0.386 0.000 0.051 0.535 0.380 0.106 0.412 C 0.386 3.623 0.051 0.330 3.315 0.180 0.339 C 0.386 2.497 0.051 0.330 2.865 0.180 0.394 C 0.348 1.248 0.051 0.396 1.565 0.152 0.336 C 0.348 4.872 0.051 0.396 4.616 0.152 0.279 C 0.348 2.362 0.051 0.527 2.066 0.033 0.356 C 0.348 3.758 0.051 0.527 4.114 0.033 0.407 C 1.267 3.672 3.677 1.012 3.819 3.581 0.310 C 1.267 2.448 3.677 1.012 2.361 3.581 0.286 C 1.267 0.049 3.677 1.211 0.123 3.572 0.140 C 1.267 6.071 3.677 1.211 6.058 3.572 0.120 C 1.258 1.200 3.575 1.094 1.189 3.412 0.232 C 1.258 4.920 3.575 1.094 4.992 3.412 0.242 C 1.258 1.310 3.575 1.002 1.373 3.390 0.322 C 1.258 4.810 3.575 1.002 4.807 3.390 0.316 C 4.250 0.000 0.051 4.431 0.066 0.025 0.194 C 4.250 6.120 0.051 4.431 6.115 0.025 0.182 C 4.259 1.248 0.051 4.313 1.246 0.185 0.242 C 4.259 4.872 0.051 4.313 4.935 0.185 0.250 C 4.250 2.497 0.051 4.231 2.418 0.016 0.088 C 4.250 3.623 0.051 4.231 3.762 0.016 0.145 C 4.250 1.236 0.051 4.221 1.316 0.207 0.178 C 4.250 4.884 0.051 4.221 4.864 0.207 0.160 C 2.598 3.672 3.677 2.890 3.372 3.417 0.493 C 2.598 2.448 3.677 2.890 2.809 3.417 0.532 C 2.561 4.920 3.677 2.823 4.672 3.445 0.429 C 2.561 1.200 3.677 2.823 1.508 3.445 0.467 C 2.598 6.071 3.677 2.685 6.504 3.491 0.479 C 2.598 0.049 3.677 2.685 0.324 3.491 0.425 C 2.598 3.684 3.677 2.693 4.057 3.630 0.388 C 2.598 2.436 3.677 2.693 2.123 3.630 0.330 N 0.324 1.236 0.044 0.143 0.896 0.084 0.387 N 0.324 4.884 0.044 0.143 5.284 0.084 0.441 N 1.329 2.436 3.670 1.371 2.535 3.343 0.344 N 1.329 3.684 3.670 1.371 3.645 3.343 0.332 N 4.321 3.758 0.044 4.590 3.702 0.254 0.405 N 4.321 2.362 0.044 4.590 2.478 0.254 0.417 N 2.629 4.810 3.670 3.076 5.227 3.512 0.631 N 2.629 1.310 3.670 3.076 0.953 3.512 0.593 O 1.397 2.362 0.196 1.761 2.112 0.097 0.453 O 1.397 3.758 0.196 1.761 4.068 0.097 0.489 O 0.077 1.310 3.430 0.233 1.329 3.558 0.336 O 0.077 4.810 3.430 0.233 4.852 3.558 0.338 O 3.069 4.884 0.196 2.986 4.909 0.039 0.179 O 3.069 1.236 0.196 2.986 1.272 0.039 0.181 O 1.417 3.684 3.822 1.458 4.011 3.500 0.461 O 1.417 2.436 3.822 1.458 2.169 3.500 0.420 a Fredericks, R. J.; Doyne, T. H.; Sprague, R. S. J. Polym. Sci., Part A-2 1966, 4, 899 911. The monoclinic cell of space group P2 1. The lattice constants are a = 9.29 Å, b = 12.24 Å, c = 7.97 Å, and β = 114.5 b This study. a = 9.50 Å, b = 12.36 Å, c = 7.39 Å, and β = 111.6. c = [ ( x) 2 + ( y) 2 + ( z) 2] 1/2, where x, y and z are the differences in the x, y, and z coordinates between experiment and calculation. The mean value of all s, < >, is 0.341 Å. S4

Table S4. Observed and Calculated Structure Factors of the α Form of Nylon 4 Fredericks et al. a this study no h k l F obs F calc F obs F calc F calc b F sum calc F obs F sum calc b 1 2 0 0 171.9 151.6 20.3 134.00 134.00 37.90 2 0 0 2 411.3 402.4 8.9 243.80 381.40 29.90 2 0 2 137.60 3 2 0 2 172.0 127.8 44.2 74.86 138.58 33.42 4 0 2 63.72 4 4 0 0 55.2 40.4 14.8 35.28 35.28 19.92 5 2 0 4 67.6 119.4 51.8 70.64 70.64 3.04 6 0 0 4 178.1 166.9 11.2 122.50 186.11 8.01 4 0 4 63.61 7 4 0 2 98.2 63.7 34.5 35.53 59.80 38.40 6 0 2 24.27 8 2 0 4 116.7 100.2 16.5 44.14 100.10 16.60 6 0 4 45.41 6 0 0 10.55 9 4 0 6 67.6 117.8 50.2 40.37 57.89 9.71 2 0 6 17.52 10 6 0 6 128.9 142.8 13.9 39.75 135.37 6.47 6 0 2 0.67 4 0 4 21.58 0 0 6 73.37 11 2 1 1 61.5 85.5 24.0 39.78 41.96 19.54 1 1 1 2.18 12 1 2 1 43.0 70.9 27.9 1.84 50.64 7.64 0 2 1 48.80 13 2 2 1 67.7 9.9 57.8 30.86 36.30 31.40 1 2 1 0.99 2 2 0 4.44 14 2 2 1 30.8 38.9 8.1 17.91 39.30 8.50 3 2 1 21.39 15 3 2 3 92.1 107.1 15.0 21.66 117.53 25.43 0 2 3 50.65 4 2 1 19.80 2 2 2 2.44 3 2 1 20.68 4 2 2 2.29 16 3 2 5 104.4 33.0 71.4 17.07 32.15 72.25 2 2 5 4.82 5 2 5 4.89 6 2 2 5.37 17 1 3 0 12.3 46.5 34.2 14.26 14.26 1.96 18 2 3 1 24.5 63.3 38.8 11.70 35.18 10.68 1 3 1 4.76 2 3 0 18.72 19 2 3 1 36.7 65.9 29.2 7.76 34.96 1.74 3 3 1 12.93 1 3 2 14.27 20 3 3 3 61.3 89.1 27.8 0.97 70.18 8.88 4 3 1 14.76 2 3 2 16.25 3 3 1 11.42 4 3 2 26.78 21 2 4 1 49.1 25.1 24.0 0.31 19.81 29.29 3 4 1 19.50 22 2 5 1 115.8 144.6 28.8 52.94 134.95 19.15 1 5 1 82.01 23 2 5 1 149.6 129.5 20.1 52.69 122.40 27.20 3 5 1 69.71 24 3 5 3 193.0 213.0 20.0 35.98 130.26 62.74 0 5 3 8.29 4 5 1 28.31 3 5 1 57.68 25 5 5 1 130.3 87.8 42.5 48.86 73.05 57.25 4 5 1 24.19 26 6 5 1 183.4 252.9 69.5 32.39 204.93 21.53 6 5 3 34.49 4 5 5 17.06 1 5 5 38.83 3 5 3 37.66 5 5 1 44.50 27 1 5 5 231.6 180.4 51.2 38.83 87.22 144.38 4 5 3 21.63 6 5 5 26.76 28 2 6 1 30.6 22.4 8.2 17.43 56.71 6.11 3 6 1 39.28 a By X-ray diffraction (Fredericks, R. J.; Doyne, T. H.; Sprague, R. S. J. Polym. Sci.: Part A-2 1966, 4, 899-911). The isotropic temperature factor (B) was set equal to 0.80 (Å 2 ). The R factor was calculated from R = F obs F calc / F obs to be 0.273. b For the crystal structure optimized at the B3LYP-D/6-31G(d,p) level. B = 0.80 (Å 2 ) and R = F obs F sum calc / F obs = 0.253. S5

Table S5. Crystal Energies, Single Chain Energies, Basis Set Superposition Errors, and Interaction Energies of Nylons 4 and 6 crystal form basis set E Crystal /Z a E SC{SC}+D a BSSE b E CP ( ) b nylon 4 α 6 31G(d,p) 286.515441220375 286.477256419110 6.06 17.90 pob_tzvp 286.586795157450 286.549368642830 5.24 18.25 nylon 6 α 6 31G(d,p) 365.098263404000 365.052643041425 7.38 21.25 pob_tzvp 365.186300060362 365.139582003650 7.67 21.65 γ 6 31G(d,p) 365.097956318000 365.053971418045 7.10 20.50 pob_tzvp 365.186199205100 365.140016606050 8.20 20.78 a In au per repeating unit b In kcal per mol of repeating unit. S6

Appendix A. Stiffness (C) and compliance (S) tensors of the α form of nylon 4 and the α and γ forms of nylon 6 The stiffness (C) and compliance (S) tensors are defined in the orthogonal x, y, and z system. The unit vectors (e a, e b, e c ) along the a, b, and c axes of monoclinic cells of nylons 4 and 6 are expressed in the (x, y, z) coordinates as e a = (1, 0, 0) (S1) and e b = (0, 1, 0) e c = (cos β, 0, sin β) where β is the lattice constant. Young s modulus E(l 1,l 2,l 3 ) in an arbitrary direction defined with the unit vector (l 1, l 2, l 3 ) in a monoclinic lattice can be calculated from 1 E(l 1,l 2,l 3 ) = l 4 1 s 11 + 2l 2 1 l2 2 s 12 + 2l 2 1 l2 3 s 13 + 2l 3 1 l 3 s 15 + l 4 2 s 22 + 2l 2 2 l2 3 s 23 + 2l 1 l 2 2 l 3 s 25 + l 4 3 s 33 + 2l 1 l 3 3 s 35 + l 2 2 l2 3 s 44 + 2l 1 l 2 2 l 3 s 46 + l 2 1 l2 3 s 55 + l 2 1 l2 2 s 66 where s ij is the (i, j) element of the compliance tensor. For example, Young s modulus E b parallel to the b axis (chain axis) can be derived from the above equation with l 1 = 0, l 2 = 1, and l 3 = 0. (a) Stiffness (C) and compliance (S) tensors of the α form of nylon 4: C = 61.186 6.531 6.222 0.000 3.810 0.000 335.146 4.647 0.000 0.477 0.000 25.998 0.000 1.575 0.000 2.091 0.000 0.477 3.027 0.000 3.701 (GPa) 18.6498 0.3179 6.0219 0.0000 26.6581 0.0000 2.9967 0.4199 0.0000 0.6541 0.0000 41.7523 0.0000 29.2434 0.0000 S = 492.7935 0.0000 63.5296 (TPa 1 ) (S6) 379.2492 0.0000 278.3835 The above S tensor yields crystalline moduli in the a, b, and c directions as E a = 53.62 GPa, E b = 333.7 GPa, and E c = 16.76 GPa. (b) Stiffness and compliance tensors of the α form of nylon 6: (S2) (S3) (S4) (S5) S = C = 50.711 1.224 6.989 0.000 3.215 0.000 318.845 7.972 0.000 0.531 0.000 23.811 0.000 2.247 0.000 3.567 0.000 0.386 3.824 0.000 1.661 22.4729 0.0962 8.9029 0.0000 24.1105 0.0000 3.1633 1.1154 0.0000 0.2972 0.0000 48.3550 0.0000 35.7377 0.0000 287.5556 0.0000 66.7480 302.7279 0.0000 617.5534 (GPa) (TPa 1 ) (S7) (S8) S7

The above S tensor yields crystalline moduli in the a, b, and c directions as E a = 44.50 GPa, E b = 316.1 GPa, and E c = 19.41 GPa. (c) Stiffness and compliance tensors of the γ form of nylon 6: C = 29.444 11.011 10.803 0.000 3.403 0.000 160.175 18.294 0.000 9.504 0.000 30.412 0.000 8.392 0.000 5.322 0.000 0.298 9.722 0.000 9.011 (GPa) 39.4549 1.7483 11.3946 0.0000 5.6850 0.0000 8.3710 8.9811 0.0000 16.5484 0.0000 57.3050 0.0000 54.2589 0.0000 S = 188.2514 0.0000 6.2176 (TPa 1 ) (S10) 167.8669 0.0000 111.1795 The above S tensor yields crystalline moduli in the a, b, and c directions as E a = 25.35 GPa, E b = 119.5 GPa, and E c = 38.11 GPa. (S9) S8