Scale Imaging of Cation Ordering

Similar documents
A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation

Electronic Supplementary Information

behavior explored by in situ neutron powder diffraction during electrochemical oxygen

Electronic Structure and Photocatalytic Activity of Wurtzite Cu Ga S Nanocrystals and their Zn substitution

Supporting Information. Electrochemical & Thermal-Stability Investigation

Supporting Information

Supporting Information for Interstitial oxygen in perovskite-related Sr 6-2x

Electronic Supplementary Information

Supporting Information

Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes

A mesoporous aluminium metal-organic framework with 3 nm open pores

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Determination of the boron content in polyethylene samples using the reactor Orphée

Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

Supporting Information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Adjustment and Matching of Energy band of TiO 2 -based Photocatalysts by Metal Ions (Pd, Cu, Mn) for Photoreduction of CO 2 into CH 4.

Redox Noninnocence of the Bridge in Copper(II) Salophen and bis-oxamato Complexes

Supporting Information for. Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers. with High Porosity

Electronic Supplementary Information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Fullerene growth from encapsulated graphene flakes

unique electronic structure for efficient hydrogen evolution

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Supplementary Material

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro

Experimental Section

Supporting Information

Supporting Information for. Interfacial Electronic States and Self-Formed p-n Junctions in

Supplementary Information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Supporting Information. Pb 6 Ba 2 (BO 3 ) 5 X (X = Cl, Br): new borate halides with strong

Supporting Information

Supplementary Information:

SYNTHESIS IN SUPERCRITICAL AMMONIA AND CHARACTERIZATION OF NANOSTRUCTURED NICKEL OXINITRIDE

Press Release. Discovery of a New Crystal Structure Family of Oxide-Ion. Conductors NdBaInO 4

The Cubic Perovskite Structure of Black. Formamidinium Lead Iodide, α-[hc(nh 2 ) 2 ]PbI 3,

Electronic Supplementary Information

Structural study of a rare earth-rich aluminoborosilicate glass containing various alkali and alkaline-earth modifier cations

What is a perovskite?

Supporting Information

Earth Materials I Crystal Structures

Supporting Information

Supplementary material

Supporting Information. Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic

Supporting Information. Ultrathin Lanthanum Tantalate Perovskite Nanosheets Modified. by Nitrogen Doping for Efficient Photocatalytic Water Splitting

X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 0001

Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure

Designing of metallic nanocrystals embedded in non-stoichiometric perovskite nanomaterial and its surface-electronic characteristics

New lithium-ion conducting perovskite oxides related to (Li, La)TiO 3

Supplementary Information

A novel Ag 3 AsO 4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance

Supporting Information (SI) for

Courtesy of Ray Withers Electron Diffraction and the Structural Characterization of Modulated and Aperiodic Structures

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang *

Morphology-Selective Synthesis of Cu(NO3)2 2.5H2O. Micro/Nanostructures Achieved by Rational Manipulation

A chiral open-framework fluorinated cobalt phosphate consists of. distorted F-encapsulated double 4-ring units with bulk homochirality

the multiple helices

Supplementary Information

Supporting Information

Supporting Information for Hierarchical Structure and Polymorphism of a

groups School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin Heilongjiang , China

Heterovalent cation-substituted Aurivillius phases, Bi 2 SrNaNb 2 TaO 12 and Bi 2 Sr 2 Nb 3 x M x O 12 (M = Zr, Hf, Fe, Zn)

Supplementary Figure 1 SEM image for the bulk LCO.

Supporting Information

Electronic Supplementary Information Band-Structure-Controlled BiO(ClBr) (1-x)/2 I x Solid Solutions for Visible-Light Photocatalysis

Electronic Supplementary Information (ESI) Dual Homogeneous and Heterogeneous Pathways in Photo- and

Structural Analysis and Dielectric Properties of Cobalt Incorporated Barium Titanate

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application

Structural and magnetic properties of the (Ca1-xNax)(Fe2-xTix)O4 solid solution (0 x 1)

Electronic Supplementary Information

Modelling the PDF of Crystalline Materials with RMCProfile

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit?

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution

Supplementary Information

SUPPLEMENTARY INFORMATION

Supporting Information (Online Material) for

Electronic Supplementary Information

Supporting Information

SUPPLEMENTARY INFORMATION

Supporting information

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES

Neutron Powder Diffraction Theory and Instrumentation

University of Chinese Academy of Sciences, Beijing , China. To whom correspondence should be addressed :

Supporting information Chemical Design and Example of Transparent Bipolar Semiconductors

Supporting information

An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology. Supporting information

The electric field induced strain behavior of single. PZT piezoelectric ceramic fiber

Supporting Information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Electronic Supplementary Information (ESI) for:

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C

Supporting Information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Ram Seshadri MRL 2031, x6129, These notes complement chapter 6 of Anderson, Leaver, Leevers and Rawlings

Supporting information. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb 2+ ion in aqueous solution

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007

Supporting Information

Room-temperature emissive liquid crystalline materials based on palladium(ii) imine derivatives containing the 2-phenylpyridine core

Supporting information

Transcription:

Supporting information First 14-Layer Twinned Hexagonal Perovskite Ba 14 Mn 1.75 Ta 10.5 O 42 : Atomic- Scale Imaging of Cation Ordering Fengqiong Tao 1, Cécile Genevois 2, Fengqi Lu 1, Xiaojun Kuang 1, *, Florence Porcher 3, Liangju Li 4, Tao Yang 4, Wenbo Li 5, Di, Zhou 5, Mathieu Allix 2, * 1. Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Nonferrous Metal and Featured Materials, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 P. R. China 2. UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex2, and Université d Orléans, Faculté des Sciences, Avenue du Parc Floral, 45067 Orléans Cedex 2, France 3. CEA Saclay, Laboratoire Léon Brillouin, F-91191 Gif Sur Yvette,France 4. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China 5. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049,Shaanxi, P. R. China *E-mail: kuangxj@glut.edu.cn(x.k.); mathieu.allix@cnrs-orleans.fr(m.a.) S1

Intensity (a. u.) 1773 K 12h 1723 K 12h 1673 K 6h 1573 K 6h 1473 K 6h :5H :3C :14H 10 20 30 40 50 60 2Theta ( o ) Figure S1. XRD patterns of Ba 14 Mn 1.75 Ta 10.5 O 42 (BMT) samples fired at different temperatures for 6-12 h. 5H, 3C and 14H correspond to 5-layer hexagonal Ba 5 Ta 4 O 15, 3-layer cubic Ba 3 MnTa 2 O 9 and 14-layer hexagonal BMT phases, respectively. Figure S2. SAED pattern of BMT recorded along [001] direction. The indexation was performed using the simple 14-layer hexagonal perovskite cell. S2

Figure S3. Schematic view of the ab-planes for the simple (in black) and triple (in red) 14-layer phases showing the cell tripling along the [110] axis for the simple 14-layer phase. The green and red spheres denote A and O atoms, respectively. 34.0 Cell parameters(å) 33.8 33.6 33.4 10.20 10.15 c a 10.10 10.05 400 600 800 1000 1200 1400 Temperature (K) Figure S4. Temperature dependency of cell parameters for the 14-layer hexagonal phase BMT. S3

Figure S5. Hydrogen-reduction TGA data of BMT from RT to 1473 K. 12 (a) 8 Counts(10 3 ) 4 0 10 20 30 40 50 60 2Theta( ) S4

10 (b) Counts(10 3 ) 5 0 70 80 90 100 110 120 2Theta( ) Figure S6. Enlarged plots of the Rietveld fit of NPD data for the 14-layer twinned hexagonal perovskite BMT within different 2Theta ranges of (a) 5-65º and (b) 65-120. 1.0 (a) Counts(10 4 ) 0.5 0.0 1 2 3 4 5 6 7 8 2Theta( ) S5

15 (b) Counts(10 4 ) 10 5 0 8 9 10 11 12 13 14 15 2Theta( ) 4 (c) Counts(10 4 ) 2 0 15 20 25 30 35 2Theta( ) S6

0.2 (d) Counts(10 4 ) 0.0 35 40 45 50 2Theta( ) Figure S7. Enlarged plots of the Rietveld fit of SPD data for the 14-layer twinned hexagonal perovskite BMT within different 2Theta ranges of (a) 1-8, (b) 8-15º, (c) 15-35º and (d) 35-50º. S7

Table S1. Final refined structural parameters for the triple 14-layer phase of BMT* from the two-phase refinement against combined SPD and NPD data. Atom Site x y z Occupancy B iso (Å 2 ) a BVS b Ba1 2a 0 0 0.3868(5) 1 0.47(1) 1.76 Ba2 2a 0 0 0.1108(3) 1 0.47(1) 2.43 Ba3 4b 1/3 2/3 0.3965(2) 1 0.47(1) 2.64 Ba4 4b 1/3 2/3 0.6109(2) 1 0.47(1) 2.16 Ba5 6c 0.6456(4) 0 0.6867(3) 1 0.47(1) 2.15 Ba6 6c 0.6962(4) 0 0.8118(3) 1 0.47(1) 2.45 Ba7 6c 0.6647(7) 0 0.4673(3) 1 0.47(1) 2.41 Ba8 6c 0.6672(7) 0 0.0367(3) 1 0.47(1) 2.46 Ba9 6c 0.3318(9) 0 0.7506(4) 1 0.47(1) 1.96 Ta1 6c 0.6659(5) 0 0.5719(3) 1 0.166(8) 4.68 Ta2 6c 0.6710(4) 0 0.9304(3) 1 0.166(8) 4.91 Ta3 2a 0 0 0.5014(6) 0.10(2) 0.166(8) 3.36 Mn3 2a 0 0 0.5014(6) 0.90(2) 0.166(8) 2.37 Ta4 4b 1/3 2/3 0.5019(7) 0.14(1) 0.166(8) 3.41 Mn4 4b 1/3 2/3 0.5019(7) 0.86(1) 0.166(8) 2.40 Ta5 6c 0.3440(4) 0 0.8588(3) 1 0.166(8) 4.93 Ta6 6c 0.3289(4) 0 0.6454(3) 1 0.166(8) 5.40 Ta7 2a 0 0 0.7177(3) 1 0.166(8) 4.26 Ta9 4b 1/3 2/3 0.7192(5) 0.22(1) 0.166(8) 2.64 S8

Ta10 4b 1/3 2/3 0.2875(3) 0.78(1) 0.166(8) 5.50 O1 6c 0.804(1) 0 0.3278(6) 1 0.21(2) 2.34 O2 6c 0.831(2) 0 0.1734(6) 1 0.21(2) 2.22 O3 12d 0.485(1) 0.339(1) 0.1769(5) 1 0.21(2) 2.13 O4 12d 0.3641(9) 0.519(1) 0.3306(4) 1 0.21(2) 1.95 O5 6c 0.827(1) 0 0.7416(6) 1 0.21(2) 2.15 O6 12d 0.832(1) 0.351(1) 0.2619(4) 1 0.21(2) 2.14 O7 6c 0.502(2) 0 0.1056(6) 1 0.21(2) 1.96 O8 6c 0.496(1) 0 0.4011(6) 1 0.21(2) 2.12 O9 12d 0.1762(5) 0.8238(5) 0.3969(5) 1 0.21(2) 1.98 O10 12d 0.8334(6) 0.1666(6) 0.1083(5) 1 0.21(2) 1.96 O11 6c 0.821(2) 0 0.5356(7) 1 0.21(2) 2.01 O12 6c 0.829(2) 0 0.9638(6) 1 0.21(2) 1.99 O13 12d 0.323(1) 0.481(1) 0.9692(5) 1 0.21(2) 1.98 O14 12d 0.492(1) 0.328(1) 0.5388(5) 1 0.21(2) 2.03 *a = 10.07782(2) Å, c = 33.44271(9) Å, V = 2941.48(1) Å 3, space group: P6 3 cm, Z = 3. a The atomic displacement parameters B iso were constrained to be equal for the atoms of the same type but on distinctly crystallographic sites to prevent some atoms from getting small negative values when refined independently given the large number of independently crystallographic sites. b The BVSs for the oxygen sites were calculated with the mixed and partial occupancies of the B-sites taken into consideration. S9

Table S2. Bond lengths for the triple superstructure of the 14-layer BMT. Bond Lengths(Å) Bond Lengths(Å) Ba1-O1( 3) 2.79(2) Ba9-O1( 1) 2.91(2) Ba1-O9( 6) 3.083(8) Ba9-O2( 1) 3.05(2) Ba1-O12( 3) 3.09(2) Ba9-O3( 2) 2.88(2) Ba9-O4( 2) 3.19(2) Ba2-O2( 3) 2.69(2) Ba9-O5( 2) 2.903(8) Ba2-O10( 6) 2.90(1) Ba9-O6( 2) 2.79(1) Ba2-O11( 3) 3.09(2) Ba9-O6( 2) 3.19(2) Ba3-O4( 3) 2.75(2) Ta1 -O7( 1) 2.02(2) Ba3-O8( 3) 2.904(1) Ta1-O10( 2) 2.07(1) Ba3-O9( 3) 2.734(8) Ta1 -O11( 1) 1.98(2) Ba3-O13( 3) 3.03(2) Ta1 -O14( 2) 1.96(2) Ba4-O3( 3) 2.88(2) Ta2 -O8( 1) 1.95(2) Ba4-O7( 3) 2.905(1) Ta2 -O9( 2) 2.01(1) Ba4-O10( 3) 2.90(1) Ta2 -O12( 1) 1.94(2) Ba4-O14( 3) 2.96(2) Ta2 -O13( 2) 2.02(2) Ba5-O2( 2) 3.116(5) Ta3/Mn3-O11( 3) 2.13(2) Ba5-O3( 2) 2.69(1) Ta3/Mn3-O12( 3) 2.13(2) S10

Ba5-O3( 2) 2.99(2) Ta4/Mn4-O13( 3) 2.12(2) Ba5-O5( 1) 2.59(2) Ta4/Mn4-O14( 3) 2.12(2) Ba5-O6( 2) 3.01(2) Ba5-O7( 1) 3.08(2) Ta5 -O1( 1) 1.81(2) Ba5-O10( 2) 3.17(2) Ta5 -O4( 2) 1.92(1) Ta5 -O8( 1) 2.13(2) Ba6-O1( 2) 2.732(6) Ta5 -O9( 2) 2.15(1) Ba6-O4( 2) 2.958(9) Ba6-O5( 1) 2.69(2) Ta6 -O2( 1) 1.86(2) Ba6-O6( 2) 2.57(2) Ta6 -O3( 2) 1.85(2) Ta6 -O7( 1) 2.16(2) Ba7-O8( 1) 2.78(2) Ta6 -O10( 2) 2.06(1) Ba7-O9( 2) 2.89(2) Ba7-O11( 1) 2.76(2) Ta7 -O2( 3) 2.25(2) Ba7-O12( 2) 2.919(6) Ta7 -O5( 3) 1.91(2) Ba7-O13( 2) 2.98(1) Ba7-O13( 2) 2.82(1) Ta9 -O3( 3) 2.33(2) Ba7-O14( 2) 2.87(2) Ta9 -O6( 3) 2.13(2) Ba8-O7( 1) 2.84(2) Ta10/ -O4( 3) 2.19(2) Ba8-O10( 2) 2.91(2) Ta10 -O6( 3) 1.80(1) Ba8-O11( 2) 2.898(5) S11

Ba8-O12( 1) 2.92(2) Ba8-O13( 2) 2.73(2) Ba8-O14( 2) 2.86(1) Ba8-O14( 2) 2.95(1) Table S3. Photocatalytic H 2 evolution rates for the BMT powders loaded with various cocatalysts under UV light irradiation. Cocatalyst H 2 evolution rate (µmol/h/g) 1 wt% Pt 21.0 1 wt% Ru 15.6 1 wt% Pd 18.7 1 wt% Au 15.1 1 wt% Ag 20.6 0.5 wt% Pt and 0.5 wt% Ag 27.6 0.5 wt% Ru and 0.5 wt% Ag 24.2 S12

Figure S8. Photocatalytic H 2 evolution for the BMT powders loaded with various cocatalysts under UV light irradiation. S13