E S.Drenska, S.Cht.Mavrodiev ON MODELLING OF HADRON INTERACTIONS

Similar documents
3 /,,,:;. c E THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254. A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov.

Storm Open Library 3.0

Math-Net.Ru All Russian mathematical portal

About One way of Encoding Alphanumeric and Symbolic Information

ядерных исследо1аии! дума

\ / I N S T I T U T E FOR HIGH ENERGY PHYSICS И Ф В Э

IS.Akh«b.ki»n, J.Bartke, V.G.Griihin, M.Kowahki

M-6~ El STRANGENESS EXCHANGE IN HIGH ENERGY INTERACTIONS

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

ITP-9O-29B. L.L.Jenkovszky, E.S,Martynov, HOW FAST DO CROSS SECTIONS RISE?

VOL ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ. Дубна Е НЕРТН/ V.Berezovoj 1, A.Pashnev 2

A.N.Makhlin, Yu.M.Sinyukov HYDRODYNAMICS OF HADRON MATTER UNDER PION IHTERPEROMETRIC MICROSCOPE

COALESCENCE MODEL PAULI QUENCHING IN HIGH-ENERGY HEAVY-ION COLLISIONS

REMARKS ON ESTIMATING THE LEBESGUE FUNCTIONS OF AN ORTHONORMAL SYSTEM UDC B. S. KASlN

XJ ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ. Дубна Е

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР

'tч о/ч /J4 1984" , АУбна. ( 3 Не, t) ОбЪ8АМН8ННЫI. м с с Jl е А.о в а н м й. El INVESTIGATION OF ТНЕ CHARGE-EXCHANGE REACTION

J.Bell, C.T.Coffin, B.P.Roe, A.A.Seidl, D.Sinclair, E.Wang (University of Michigan,Ann Arbon, Michigan USA)

On the Distribution o f Vertex-Degrees in a Strata o f a Random Recursive Tree. Marian D O N D A J E W S K I and Jerzy S Z Y M A N S K I

C-CC514 NT, C-CC514 PL C-CC564 NT, C-CC564 PL C-CC574 NT, C-CC574 PL C-CC714 NT, C-CC714 PL C-CC764 NT, C-CC764 PL C-CC774 NT, C-CC774 PL

ОБЪЕДИНЕННЫЙ ЯДЕРНЫХ. Дубна ^Ш ИНСТИТУТ ПИШЛЕДОВАШ! Е V.S.Melezhik* NEW APPROACH TO THE OLD PROBLEM OF MUON STICKING IN \icf

USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS. Yu.M.Zinoviev

Introduction to Modern Physics Problems from previous Exams 3

XJ E2-98-1O1. M.K.Volkov, M.Nagy*, V.L.Yudichev. SCALAR MESONS IN THE NAMBU JONA-LASINIO MODEL WITH THE 'thooft INTERACTION

~ ~3 )~\f. (_3Уь~. El OBSERVATION AND STUDY OF А NARROW STATE IN А I -(1385)К + SYSTEM А -Ъ~ " ОбЬ8АИН8ННЫМ. АУ б На. И С CJI ВАОВ.

FOREIGN OFFICE. ;<э. File HNP zibr. KM 2Щ-г_ (CLAIMS) N a m e o f File :

Feynman diagrams in nuclear physics at low and intermediate energies

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH

Distribution analysis of poly(vinyl chloride) latexes by transmission methods of light scattering

DYNAMIC THEORY X-RAY RADIATION BY RELATIVISTIC ELECTRON IN COMPOSITE TARGET. S.V. Blazhevich, S.N. Nemtsev, A.V. Noskov, R.A.

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012).

"Exotic multiquarks states at PANDA" S.S. Shimanskiy (JINR, LHEP)

Tibetan Unicode EWTS Help

E THE PION FORM FACTOR WITH GENERALIZED p -DOMINANCE

Slowing-down of Charged Particles in a Plasma

Fusion Chain Reaction

сообщения объединенного института ядерных исследования дубиа

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

SINGULAR PERTURBATIONS FOR QUASIUNEAR HYPERBOUC EQUATIONS. a " m a *-+».(«, <, <,«.)

Scientific Periodicals NASB (online-access)

ON ALGORITHMS INVARIANT T 0 NONLINEAR SCALING WITH INEXACT SEARCHES

g FACTORS AS A PROBE FOR HIGH-SPIN STRUCTURE OF NEUTRON-RICH Dy ISOTOPES

Introduction to Quantum Chromodynamics (QCD)

tfb 1 U ъ /ъ /5 FOREIGN OFFICE llftil HNP XI?/ Чо /о/ F il e ... SI» ИJ ... -:v. ' ' :... N a m e of File : Re turned Re turned Re turned.

COMPLETE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE AND CONSTANT MEAN CURVATURE IN Я4. Introduction

Homework 3: Group Theory and the Quark Model Due February 16

Czechoslovak Mathematical Journal

Isospin. K.K. Gan L5: Isospin and Parity 1

Quark Model History and current status

V.G. Baryshevsky. Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus

METHOD OF CONVERGENT WEIGHTS- AN ITERATIVE PROCEDURE FOR SOLVING FREDHOLM'S INTEGRAL EQUATIONS OF THE FIRST KIND

Temperature and concentration dependence of molar electrical conductivity of the ternary system calcium nitrate potassium nitrate water

МЕТОДИ І АЛГОРИТМИ СУЧАСНИХ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Evidence for the Strong Interaction

Babar anomaly and the pion form factors

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

NUCLEON FORM FACTORS IN A RELATIVISTIC QUARK MODEL* Abstract We demonstrate that a relativistic constituent-quark

< /, объединенный. ядерных исследований дубна ИНСТИТУТ Е C.V.Efimov, M. A. Ivanov, N.B. Kuiimanova, 2. V.E.Lyubovitskij

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The Fluxes and the Equations of Change

K.G.Klimenko ON NECESSARY AND SUFFICIENT CONDITIONS FOR SOME HIGGS POTENTIALS TO BE BOUNDED FROM BELOW

Lecture 9. Isospin The quark model

17-MESON ELECTROMAGNETIC STRUCTURE

Clebsch-Gordan Coefficients

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section

PHY397K - NUCLEAR PHYSICS - 2

; ISBN

hybrids (mesons and baryons) JLab Advanced Study Institute

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

π p-elastic Scattering in the Resonance Region

сообщения института ядерных исследований дубна E L.Martinovic, S.Dubnicka*

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

Exotic in dense and cold nuclear matter.

Math-Net.Ru All Russian mathematical portal

E- 81- THE INFLUENCE OF THE SHELL STRUCTURE ON THE MOMENT OF INERTIA. THE AVERAGE BEHAVIOUR OF THE MOMENT OF INERTIA. S.Frauendorf, V.V.

Use of the graphical analytic methods of studying the combustion processes in the internal combustion

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

{ } or. ( ) = 1 2 ψ n1. ( ) = ψ r2 n1,n2 (, r! 1 ), under exchange of particle label r! 1. ψ r1 n1,n2. ψ n. ψ ( x 1

[Published in Russian: V.V.Ammosov et al. Yadernaya Fizika I Inzhiniring 4 (2013) ] Received:

W*-«*rr \ъ~гя, Studying Triple Higgs Vertex in the Process 77 > HE at TeV Energies INSTITUTE FOR HJGH ENERGY PHYSICS ШЕР ОТФ

Imaging the Proton via Hard Exclusive Production in Diffractive pp Scattering

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

POSITIVE FIXED POINTS AND EIGENVECTORS OF NONCOMPACT DECRESING OPERATORS WITH APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS** 1.

E R.Mach PION INTERACTIONS WITH VERY LIGHT NUCLEI

Czechoslovak Mathematical Journal

to the non-structural H 2 O. As it is noted in [5 7], the availability of superstochiometric

Decays of heavy mesons in the framework of covariant quark model

D. Amati, S. Fubini, and A. Stanghellini

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Computation of diffusion coefficient dependence upon concentration from sorption experiments*

A Model That Realizes Veneziano Duality

I. DIAČIK and O. ĎURČOVÁ. Research Institute of Chemical Fibres, Svit. Received 23 October 1980

637.52:57.016:[628.16: ]

Equilibrium "solidus liquidus" in systems with limited solid solutions*

Department of Chemical Engineering, Slovak Technical Bratislava. Received 8 October 1974

The Beam-Helicity Asymmetry for γp pk + K and

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix

Transcription:

E2 12844 S.Drenska, S.Cht.Mavrodiev ON MODELLING OF HADRON INTERACTIONS

Дренска С, Мавродиев С.Щ. Е2-12844 О моделировании адронных взаимодействии На основе понятия об эффективном радиусе взаимодействия дано описание полных сечений адрон-адронных взаимодействий. Исследована зависимость полных сечений от квантовых чисел сталкивающихся адронов.предска' зано поведение полных сечений, в том числе и адрон-ядерных взаимодействий, при энергиях, недоступных на современных ускорителях. Работа выполнена в Лаборатории теоретической физики ОМ"!'! Сообшение Объединенкого института ядерных исслеловений. Дубна 1879 Qrenska S., Mavrodiev S.Cht. Е2-12844 On I'T'delling of Hadron Interactions On the basis of the idea about the effective radius a description of the tota! cross sections of the hadron interactions is given. The dependence of the tota' rro?s sections on the quantum numbers of the со''. ' s... шь is investigated. The behaviour of the total cross sections', irtclt^din^ '.'". ь \v --mc iear in^cac t ions is predicted at the energies that are impossible for the modern accelerators. The investigation has been performed at the Laboratory of Theoretical Physics, JINR. Communication of the Joint Institute for Nuclear Research. Dubno 1979 1979 ОбъвджюкшыЛ институт швршых исслшговшш» Дубна

The problem of understanding the elementary particle dynamics puts forward alongside with the development of the general ideas of quantum field theory also the preliminary problem of the systematization of the elementary particles' l/ and the experimental data of their interaction. In this paper a possibility is considered for a simple and physical clear modelling of hadron interaction. It is based on the geometrical generalization of the Rutherford formula: T^) = -JS_/d 3 r Tfrje"'", 4 ir where 1 is the relative coordinate, q is the relative momentum, and T(~q), T(r) are the elastic scattering amplitude in momentum and coordinate representation. The connection between three-dimensional relative momentum and coordinate spaces has a simple group-theoretical sense. It is a reduction of the regular representation of the group of motion of momentum space into irreducible representations defined in the coordinate space. Consequently, if the geometry of the relative momentum space for some two-particle problem is known the above group theoretical construction can be used to define the relative coordinate space. In agreement with the quasipotential approach /a,3/ we shall assume ' 4 / that the relative momentum of hadron interaction is three-dimensional and belongs to the Lobachevsky space. So, there is a relativistic analog of the Rutherford formula T(a.t) ^ - I dnrr)t(a.1)h?.i). m where fft,r)is the relativistic plane wave, m(s) is the effective mass of the problem, s and t are usual Mandelstam's variables. 3

Roughly speaking, in the dynamical relativistic Fourier analysis there appears the relative rapidity^1* у л = in Vjn5-±2l± m instead of the relative momentum in nonrelativistic Fourier analysis. So the relativistic analog of the Heisenberg relation for momentum and coordinate is the uncertainty relation for the rapidity and relativistic relative coordinate AvAri 4- -i-. < mc The exponential-power behaviour of the elastic scattering amplitude with increasing momentum transfer has a simple geometrical origin due to the well-known statement: the Euclidean geometry is the local geometry of the Lobachevsky space. Because of the clear quantum-mechanical meaning of formula (1) we can start to model the elastic scattering amplitude in the relative coordinate space. Comparing with the experimental data in momentum space by the numerical analysis it is possible to construct the elastic amplitude. If we propose that T(s,7 )has the form K.{s)e \ds)e T(s, r)= ± + ~ (2) then T(s,t) factorizes in the form /6/ T(s,t)= T(s,t,A,R<s)' /r ( 3 ) where Л is a set of unknown parameters and R(s) = R 1+ R z /s R 9 +R 4 (]ns/r 5 ) Re. (4) The optical theorem gives e from (3) o t (s) = S*R 2 (s). ( 5 ) So, the function R(s) can be interpreted as an effective radius of hadronic interactions. The effective radius of hadron-hadron interactions above the threshold energies has been obtained / 7 in the form 4

6, mb 300 r 200 Ш0 IF Я? 30 20 10 R(s). -''ii tat 2 + R(ln s/s ) A / T~ \2 г,2 о S, GeV 2 I 2 3 4 5 6 7 Pi Mi Tl 1,8929*0,0061 1,9198*0,0432 2,2672*0,0309 2,7916*0,0296 3,8160*0,0764 6,4937*0,1362 * 15,0292*0,3446 0,0259*0,0123 0,1917*0,0857 0,2704*0,1171 0,2703*0,1150 0,3464*0,1041. 0,6315*0,1114 0,8842*0,0882 0,0196*0,0047 0,1115*0,0303 0,1984*0,0415 0,2431*0,0483 0,3262*0,0536 0,6157*0,0643 * 1,1628*0,0312» Д-0,2428±0,0023 mb''.\ A =0,9993*0,0030* «=0,906*0,353 mb '' Fig. I R(s)= 1 i-1 sp Ms-ii t r+sr; + R ln A (s/soj.. The unknown functions and parameters have been found by solving the overdetermined nonlinear system of equations (6) о т (и,)- 2*R S ( S,), ( 7 ) where a t (s) are the experimental total cross sections for the processes pp, pp, n +, K+ p. The autoregularized iteras

6, mb SO JO 20 10 5 3 2 I ' ' " """ " ' - p tat so 2 4 R(s) = -_! + R (In s/s^ A (v/s-^) 2 +srf S, GeV 2 0,0222*0,0043 0,0419*0,0100 0,2580*0,0551 0,2716*0,2022; 0,4427*0,2098 0,5234*0,1296 0,9221*0,0637 /4 B 1,9691*0,0020 2,2056*0,0041 2,360B±0,0361 2,9249*0,0619 3,9992*0,1514 6,4937*0,1362* 15,0292*0,3446 * 0,0282*0,0040 0,0586*0,0078 0,2104*0,0226 0,3051*0,105(1 0,4555*0,0980 0,6157*0,0643 * 1,1628*0,0312 «Я=0,2428±0,0023 raft '<> *, A =0,9993*0 0030 й 0 =0,856±0,392 nib''' Fig. 2 tion processes of the Gauss-Newton type 8 ' in the numerical analysis were used. Figures 1-6 represent the experimental data and our description of the above-mentioned total cross sections, the corresponding effective radii, and their constituents (see (6)). The quantity X z /ti equals 1.11 for nucleons; l.ol, for pions; 1.06, for kaons. The formula (6) shows that the effective radius is a sum of the "effective radii" of successively opening with the increasing energy "channels 6

and the Froissart term. Starting from s ;> 100 GeV the Froissart term gives the main contribution to the effective radius. The asymptotic behaviour of the effective radius is R W R 0 + R ln"(s/s 0), 7 2 /=i 1+ Г/ в, ть 6*'f<5) S, GeV s i 0,1073±0,0006 l,22o4±0,0003 0,0651 ±0,003 2 3 0,Ш8±0,0012 0,ОЗИ±0,0005 1,4981±0,0004 l,b80o±o,00o3 0,0952±0,0008 0,0332±0,0003 4 0,0641±0,0028 1,843О±О,000в 0,0879±0,0022 5 0,2560±0,0186 2,1819±0,0039 0,2423 ±0,0087 6 7 0,5992*0,0525 0,9055±0,0710 3,3347±0,0212* 8,3813±0,1397 * 0,5831 ±0,032(>* 1,2014±0,0406 Л=0,1814±0,0024 mb''", 4=0,9896*0,0043 До-0,696±0,087 mb * Щ- з 7

6,mb ZOO tot + R(ln s/s )' Pi V i 1 n 0,1073±0,00'10 1,2233±0,0003 2 0,1014*0,0024 4,3233*0,0021 0,0494*0,0003 о,ша±о,«и:) 3 0,0076*0,0017 1,6700*0,01X17 о,г«л1±о,и»и ч 0,«ЮО±0.0008 ±,8993*0,0004 U,O8'.!)±0,00O5 h 0.1958*0,0123 2,3'.90±(l,0020 0,2185*0,0064 l'i O,58(i3±0,O5OS 3,3347*0,0212 0,583 l±0,032c, * 1 0,917(i*0,07(l!l S,3S'13±n,13tl7* 1,2014*0,0406» Я=0,1814±0,0024 rah'''*, Л =0,9996*0,0043' Я 0 =0,В72±0,082 fflb* Fig. 4 Obviously, comparing the behaviour of the total cross sections and the asymptotical ones the value of the Froissart energy can be estimated. The asymptotic behaviour for all total cross sections is reached (see Fig. 7) in the energy range s=lo 5 + 10 e GeV 2 (\/T= 300-1000 GeV, 10" 16 ± 10-17 cm). If one compares the Froissart energy with the unitary limit energy for the weak interactions, then it is possible to interpret the Froissart energy as the threshold energy of new structures of matter. 8

6, mb 2U030D S,GeV z f'i 1 f 0,1038±0,OO31 M83fi±0,OOI5 0,0B19±0,00l.i 2 0,0411 ±0,0024 1,6985±0,0010 0,О528±0,0П22 0,041У±0,0014 I,8l4lte0,000li 0,0431 ±0,0010 i ii 0,0324±0,0011 2,0040*0,0000 0,0573±0,0011 5 0,5421 ±0,0281 2,33 ±0,0002 0,4331*0,0158 В 0,5(103±0,1093 4,922I5±0,1IOO* O,70OB±O,00i3 * 7 0,3412±0,14(1S li,4578±0,3851* l,17!)3±0,ll!)2* Я=0,1941±0,0052 mb'i-', Л=0,9998±0,0036' йо=0,600±0,14о mb''- Fig. 5 Figure 8 shows that the theoretical description confirms the Pomeranchuk theorem. The solid curve represents the lower bound; and the dotted one, the upper bound of the corresponding cross sections. The dependence of the effective radius on the quantum numbers has been obtained in. The total cross sections of p,p,ff+, К + with proton, neutron, deutron forssloo GeV 9

в, 30 zo 10 5 3 г mb д/~ Г <>> R(s) - X _ ^ ' + R(ln s/s o ) A.У, GeK K 1 0,0983*0,0051 1,5208*0,0014 0,0978*0,0044 2 3 0,1000*0,0103 0,1435*0,0298 1,8532±0,ОШГ> 2,1694*0,012 0,1210*0,00)6 0,1930*0,0207 4 0,0 2,3738*1,8847 0,2305*0,8315 5 0,3865±0,Ш59 2,9879*0,0428 0,4322*0,0497 (i 0,4933*0,1109 4,9226*0,1100* 0,7006*0,0943 * i 0,7000*0,1418 И,4578±ВД851'» 1.1793*0,1192* Д=0,1941±0,0052 ть **, А =0,9998*0,0036* /г 0 =0,533±0,167 тъ' 1 ' Fig. 6 Ц can be described as functions of the quantum numbers with the formula (5) and R(s,A,a) = R i+ R 2 /(s/r b ) л + R^ lnfs/r 5J (8) where a is a set of quantum numbers ind A, a set of parameters. The functions Я ; fi = 1 5) have the form 10 R 1=A 1 M + A Z J + Л 3 / +A 4 S R z = А ъ <А в К + A.)B\<. A 8 \Q\ >- A \I3\ t A 10!

и й 3 = 4 П + А К М +A la J + A U \Q\+ А 1Ь 1 fi4 i e /3 ь А ^ S, я 4 =л 1 8 +л 1 9 к + л 2 0 / where «5 - J +^»81 М = m t +я В = Ь, ч Ь j = (J, +J a ;cjj +j g +л «= 9,-H 2 baryon number spin charge 7 = ^i + /2 > ( I i +! г ^ ] > jsotopic spin third projection of isotopic spin Y - y, + y t SU(3) quark number hypercharge S =s, + s 2 strangeness AP.P.PI.PI,K,K -PROTON FROIASSART ENERGIES W S 10 S, GeV *

The Table represents the values and the errors of the parameters A. The quantity x a /W is 1.11. Figures 9-11 represent the obtained description of the experimental data. N *l Table +/- ДД, N *1 +/- AA, 1.7111 +r-.0146 11.3218 +/-.0105 2 -.2319 V-.0122 12.0479 */-.0070 3.0226 +/-.0023 13 -.0708 +/-.0034 4 -.3744 +/-.0110 14 -.0184 +/-.0003 5 2.4850 +/-.0388 15.0329 +/-.0017 6.1873 +/-.0037 16.0250 +/-.0011 7.0171 1 '-.0023 17.0705 +/-.0028 8 -.3796 V-.0092 18.1762 +/-.0015 9.4035 +/-.0217 19.0055 +/-.0001 10 -.2193 +/-.0034 20 -.0049 +/-.0005 21.8100 +/-.0570 (For the dimensions of the parameters see formula C8)) AP.P,PI -,P! +.K,K + POMERANCIIUK ENERCIES 5, mb fffff 12 Ш г W 3 W W 5 10 s Fig. 8 s, GeV s

PROTON 100. 200. 1000. 2000. toooo. Fig. 9 s [GeV 2 ] NEUTRON 1000. 2000. 10000. Fig. 10 s [GeV 2 ] 13

g t (s)[mb] DEUTRON Fig. 11 1000. 2000. 10000. s [GeV 2 ] PREDICTIONS 100. 200. 1000. 000. 10000. s [GeV 2 ] 14

QUARK SUMM RULES 15

Figure 12 represents tne predictions for the total cross sections of Л, 1 +, ~ hyperons with proton. Figure 13 represents our predictions for the total cross sections 3 of Tr, He, He with proton and of " + t + interaction. Figure 14 represents the behaviour of the following quark sum rules / l / PP. : 6 un = 3 KN + 2 NN LI: 6ir~p + 3K + p = 2pn + 6K"p L2 : pp + 2 ~ p = Лр + pn JN: 4я-+р = 2ir-p + 7/8 K + p + 3/4 pp. In conclusion it should be mentioned that our predictions have about 10% uncertainty. The future measurements of the hadron-hadron total cross sections at s = 400 to 1000 GeV 2 would decrease this uncertainty. REFERENCES 1. Боголюбов Н.Н. Теория симметрии элементарных частиц. В сб.: Физика высоких энергий и теория элементарных частиц. "Наукова думка*, Киев, 1967. 2. Logunov A.A., Tavkhelidze A.N. Nuovo Cim.,1963,29, p.380. Кадышевский В.Г., Тавхелидзе А.Н. В сб.: Проблемы теоретической физики. 'Наука", М., 1969. 3. Kadyshevsky V.G. Nucl.Phys., 1968, В8б, р.125; Kadyshevsky V.G., Mateev M.D. Nuovo Cim., 1967, 55A,p.276; Кадышевский В.Г., Мир-Касимов P.M., Скачков Н.Б. ЭЧАЯ, 1972, том 2, вып.з, с.637. 4. Mavrodipv S.Cht. Fizika, 1977, p.11". 5. Mavrodiev S.Cht. JINR, P2-8897, Dubna, 1975. 6. Alexandrov L., Mavrodiev S.Cht. JINR, E2-9936, Dubna,1976. 7. Drenska S., Mavrodiev S.Cht. Yad. fiz., 1978, v.28, p.749. 8. Александров Л. ЖВМ и МФ, 1971, 11, с.1; Александров Л. ОИЯИ, P5-55U, Дубна, 1970; Александров Л. ОИЯИ, Б1-5-9969, Дубна, 1976. 9. Alexandrov L., Drenska S., Mavrodiev S.Cht. JINR, P2-12721, Dubna, 1979. lu. Denisove S.P. et al. Nucl.Phys., 1973, B65, p.l( Lipkin H.J. Nucl.Phys., 1974, B79, p.381. Rang R., Nikolescu J. Phys.Rev., 1975, Dll, p.i'461. 16 Received by Publishing Department on October 5 1979.