Selected Title s i n Thi s Serie s

Similar documents
Courant Lecture Notes in Mathematics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

HI CAMBRIDGE n S P UNIVERSITY PRESS

Global Attractors in PDE

Takens embedding theorem for infinite-dimensional dynamical systems

Classes of Linear Operators Vol. I

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Pitcher Lecture s in the Mathematical Science s

Introduction to Applied Nonlinear Dynamical Systems and Chaos

List of publications

Tobias Holck Colding: Publications. 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint.

THREE SCENARIOS FOR CHANGING OF STABILITY IN THE DYNAMIC MODEL OF NERVE CONDUCTION

hal , version 6-26 Dec 2012

Global Attractors for Degenerate Parabolic Equations without Uniqueness

ON GEOMETRIC METHODS IN WORKS BY V.I.ARNOLD AND V.V. KOZLOV 1

Hyperbolic Partial Differential Equations

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS

Undergraduate Texts in Mathematics. Editors J. H. Ewing F. W. Gehring P. R. Halmos

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION

ON THE CONTINUITY OF GLOBAL ATTRACTORS

ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1

Tobias Holck Colding: Publications

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Note on the fast decay property of steady Navier-Stokes flows in the whole space

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Igor R. Shafarevich: Basic Algebraic Geometry 2

Review: Stability of Bases and Frames of Reproducing Kernels in Model Spaces

References. 1. V.I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, (W.A. Benjamin, 1968)

University LECTURE. Series. Why th e Boundar y of a Roun d Dro p Becomes a Curv e of Orde r Fou r

Lecture Notes in Mathematics

Ergodicity for Infinite Dimensional Systems

LYAPUNOV FUNCTIONS IN HAUSDORFF DIMENSION ESTIMATES OF COCYCLE ATTRACTORS

Metric Structures for Riemannian and Non-Riemannian Spaces

Nonlinear Parabolic and Elliptic Equations

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

ALMOST PERIODIC SOLUTIONS OF NONLINEAR DISCRETE VOLTERRA EQUATIONS WITH UNBOUNDED DELAY. 1. Almost periodic sequences and difference equations

Global regularity of a modified Navier-Stokes equation

b i (µ, x, s) ei ϕ(x) µ s (dx) ds (2) i=1

Mathematical Analysis

MATHEMATICAL PHYSICS

TRAJECTORY ATTRACTORS FOR THE 2D NAVIER STOKES SYSTEM AND SOME GENERALIZATIONS. Vladimir V. Chepyzhov Mark I. Vishik. Introduction

Differential Equations with Mathematica

SHADOWING PROPERTY FOR INDUCED SET-VALUED DYNAMICAL SYSTEMS OF SOME EXPANSIVE MAPS

Notes on D 4 May 7, 2009

FIXED POINT OF CONTRACTION AND EXPONENTIAL ATTRACTORS. Y. Takei and A. Yagi 1. Received February 22, 2006; revised April 6, 2006

arxiv: v2 [math.ap] 6 Sep 2007

arxiv:math/ v1 [math.rt] 9 Oct 2004

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

THE EXISTENCE OF GLOBAL ATTRACTOR FOR A SIXTH-ORDER PHASE-FIELD EQUATION IN H k SPACE

ON CONTINUITY OF MEASURABLE COCYCLES

Elements of Applied Bifurcation Theory

Course Description - Master in of Mathematics Comprehensive exam& Thesis Tracks

Introduction to Dynamical Systems Basic Concepts of Dynamics

Memoirs on Differential Equations and Mathematical Physics

SOLVABILITY OF MULTIPOINT DIFFERENTIAL OPERATORS OF FIRST ORDER

Lie-Bäcklund-Darboux Transformations

Recent new examples of hidden attractors

Abstracts. Furstenberg The Dynamics of Some Arithmetically Generated Sequences

Peter E. Kloeden Eckhard Platen. Numerical Solution of Stochastic Differential Equations

Asymptotic behavior of Ginzburg-Landau equations of superfluidity

Mathematical Hydrodynamics

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

VISCOUS HYDRODYNAMICS THROUGH STOCHASTIC PERTURBATIONS OF FLOWS OF PERFECT FLUIDS ON GROUPS OF DIFFEOMORPHISMS *

A Note on Some Properties of Local Random Attractors

TOPICS. P. Lax, Functional Analysis, Wiley-Interscience, New York, Basic Function Theory in multiply connected domains.

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

J. Duncan, C.M. McGregor, Carleman s inequality, Amer. Math. Monthly 110 (2003), no. 5,

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings

Frequency Methods in Oscillation Theory

Mathematical Theory of Control Systems Design

EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Lipschitz shadowing implies structural stability

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS

Stochastic Partial Differential Equations with Levy Noise

NIL, NILPOTENT AND PI-ALGEBRAS

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for:

WHAT IS A CHAOTIC ATTRACTOR?

Lecture Notes in Mathematics

Hopf Bifurcation in a Scalar Reaction Diffusion Equation

Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN

Advanced Mathematical Methods for Scientists and Engineers I

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

Linear Partial Differential Equations for Scientists and Engineers

SOME PROBLEMS OF SHAPE OPTIMIZATION ARISING IN STATIONARY FLUID MOTION

EXISTENCE OF CONJUGACIES AND STABLE MANIFOLDS VIA SUSPENSIONS

Bifurcations of phase portraits of pendulum with vibrating suspension point

arxiv: v1 [math.ap] 10 May 2013

Nonlinear Problems of Elasticity

QUANTUM SCATTERING THEORY FOR SEVERAL PARTICLE SYSTEMS

A Product Property of Sobolev Spaces with Application to Elliptic Estimates

CONDITIONS FOR FACTORIZATION OF LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS

Werner Balser January 11, 2014 LIST OF PUBLICATIONS

A Tapestry of Complex Dimensions

Statistics of Random Processes

ANALYSIS IN SOBOLEV AND BV SPACES

Segment Description of Turbulence

Publications. Graeme Segal All Souls College, Oxford

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

Spectral theory for magnetic Schrödinger operators and applicatio. (after Bauman-Calderer-Liu-Phillips, Pan, Helffer-Pan)

METHODS FOR SOLVING MATHEMATICAL PHYSICS PROBLEMS

Transcription:

Selected Title s i n Thi s Serie s 49 Vladimi r V. Chepyzho v an d Mar k I. Vishik, Attractor s fo r equation s o f mathematical physics, 200 2 48 Yoa v Benyamin i an d Jora m Lindenstrauss, Geometri c nonlinea r functiona l analysis, Volume 1, 200 0 47 Yur i I. Manin, Frobeniu s manifolds, quantu m cohomology, an d modul i spaces, 199 9 46 J. Bourgain, Globa l solution s o f nonlinear Schrodinge r equations, 199 9 45 Nichola s M. Kat z an d Pete r Sarnak, Rando m matrices, Frobeniu s eigenvalues, an d monodromy, 199 9 44 Max-Alber t Knus, Alexande r Merkurjev, an d Marku s Rost, Th e boo k o f involutions, 199 8 43 Lui s A. Caffarell i an d Xavie r Cabre, Full y nonlinea r ellipti c equations, 199 5 42 Victo r Guillemi n an d Shlom o Sternberg, Variation s o n a theme b y Kepler, 199 0 41 Alfre d Tarsk i an d Steve n Givant, A formalization o f set theor y withou t variables, 198 7 40 R. H. Bing, Th e geometri c topolog y o f 3-manifolds, 198 3 39 N. Jacobson, Structur e an d representation s o f Jordan algebras, 196 8 38 O. Ore, Theor y o f graphs, 196 2 37 N. Jacobson, Structur e o f rings, 195 6 36 W. H. Gottschal k an d G. A. Hedlund, Topologica l dynamics, 195 5 35 A. C. Schaeffe r an d D. C. Spencer, Coefficien t region s fo r Schlich t functions, 195 0 34 J. L. Walsh, Th e locatio n o f critica l point s o f analyti c an d harmoni c functions, 195 0 33 J. F. Ritt, Differentia l algebra, 195 0 32 R. L. Wilder, Topolog y o f manifolds, 194 9 31 E. Hill e an d R. S. Phillips, Functiona l analysi s an d semigroups, 195 7 30 T. Rado, Lengt h an d area, 194 8 29 A. Weil, Foundation s o f algebraic geometry, 194 6 28 G. T. Whyburn, Analyti c topology, 194 2 27 S. Lefschetz, Algebrai c topology, 194 2 26 N. Levinson, Ga p an d densit y theorems, 194 0 25 Garret t Birkhoff, Lattic e theory, 194 0 24 A. A. Albert, Structur e o f algebras, 193 9 23 G. Szego, Orthogona l polynomials, 193 9 22 C. N. Moore, Summabl e serie s an d convergenc e factors, 193 8 21 J. M. Thomas, Differentia l systems, 193 7 20 J. L. Walsh, Interpolatio n an d approximatio n b y rationa l function s i n th e comple x domain, 193 5 19 R. E. A. C. Pale y an d N. Wiener, Fourie r transform s i n the comple x domain, 193 4 18 M. Morse, Th e calculu s o f variations i n the large, 193 4 17 J. M. Wedderburn, Lecture s o n matrices, 193 4 16 G. A. Bliss, Algebrai c functions, 193 3 15 M. H. Stone, Linea r transformation s i n Hilber t spac e an d thei r application s t o analysis, 1932 14 J. F. Ritt, Differentia l equation s fro m th e algebrai c standpoint, 193 2 13 R. L. Moore, Foundation s o f point se t theory, 193 2 12 S. Lefschetz, Topology, 193 0 For a complet e lis t o f titles i n this series, visi t th e AMS Bookstor e a t www.ams.org/bookstore/.

This page intentionally left blank

Attractor s for Equation s of Mathematica l Physic s

This page intentionally left blank

http://dx.doi.org/10.1090/coll/049 America n Mathematica l Societ y Colloquiu m Publication s Volum e 49 Attractor s for Equation s of Mathematica l Physic s Vladimi r V. Chepyzho v Mar k I. Vishi k 5jiEM47y America n Mathematica l Societ y Providence, Rhod e Islan d

Editorial Boar d Susan J. Friedlander, Chai r Yuri Mani n Peter Sarna k 2000 Mathematics Subject Classification. Primar y 35K90, 35B40, 37C70, 37L30 ; Secondary 35Q99, 35Q30, 35L70, 35K57. ABSTRACT. The author s stud y ne w problem s relate d t o the theory o f infinite-dimensional dynam - ical systems that wer e intensively develope d durin g th e las t fe w years. The y construc t th e attrac - tors an d stud y thei r propertie s fo r variou s non-autonomou s equation s o f mathematica l physics : the 2 D an d 3 D Navier-Stoke s systems, reaction-diffusio n systems, dissipativ e wav e equations, the comple x Ginzburg-Landa u equation, an d others. Sinc e th e attractor s usuall y hav e infinit e dimension, th e researc h i s focuse d o n th e Kolmogoro v -entrop y o f attractors. Uppe r estimate s for th e ^-entrop y o f unifor m attractor s o f non-autonomou s equation s i n term s o f e-entrop y o f time-dependent coefficient s o f the equatio n ar e proved. The author s als o construc t attractor s fo r thos e equation s o f mathematica l physic s fo r whic h the solutio n o f the correspondin g Cauch y proble m i s no t uniqu e o r th e uniquenes s i s no t know n (for example, th e 3 D Navier-Stoke s system). Th e theor y o f th e trajector y attractor s fo r thes e equations i s developed, whic h i s late r use d t o construc t globa l attractor s fo r equation s withou t uniqueness. Th e metho d o f trajector y attractor s i s applie d t o th e stud y o f finite-dimensiona l approximations o f attractors. Th e perturbatio n theor y fo r trajector y an d globa l attractor s i s developed an d use d i n th e stud y o f th e attractor s o f equation s wit h term s rapidl y oscillatin g with respec t t o spatia l an d tim e variables. I t i s show n tha t th e attractor s o f these equation s ar e contained i n a thin neighbourhoo d o f the attracto r o f the average d equation. Library o f Congres s Cataloging-in-Publicatio n Dat a Chepyzhov, Vladimi r V., 1962 - Attractors fo r equation s o f mathematical physic s / Vladimi r V. Chepyzhov, Mar k I. Vishik. p. cm. (Colloquiu m publication s / America n Mathematica l Society, ISS N 0065-925 8 ; v. 49 ) Includes bibliographica l reference s an d index. ISBN 0-8218-2950-5 (alk. paper ) 1. Attractor s (Mathematics ) 2. Evolutio n equations-numerica l solutions. 3. Mathemati - cal physics. I. Vishik, M. I. II. Title. III. Colloquiu m publication s (America n Mathematica l Society) ; v. 49. QA614.813.C46 200 1 515'.353-dc21 200104640 6 Copying an d reprinting. Individua l reader s o f thi s publication, an d nonprofi t librarie s acting fo r them, ar e permitte d t o mak e fai r us e o f the material, suc h a s to cop y a chapter fo r us e in teachin g o r research. Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given. Republication, systemati c copying, o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society. Request s fo r suc h permission shoul d be addressed to the Assistant t o the Publisher, America n Mathematical Society, P. O. Bo x 6248, Providence, Rhod e Islan d 02940-6248. Request s ca n als o b e mad e b y e-mai l t o reprint-permissionoams.org. 200 2 b y the America n Mathematica l Society. Al l rights reserved. The America n Mathematica l Societ y retain s al l right s except thos e grante d t o th e Unite d State s Government. Printed i n the Unite d State s o f America. @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability. Visit th e AM S hom e pag e a t URL : http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0 7 0 6 0 5 0 4 0 3 0 2

Dedicated to our wives, Katya and Asya

This page intentionally left blank

Contents Introduction 1 Part 1. Attractor s o f Autonomous Equation s 1 5 Chapter I. Attractor s o f Autonomous Ordinar y Differentia l Equation s 1 7 1. Semigroup s an d attractor s 1 7 2. Example s o f ordinary differentia l equation s an d thei r attractor s 2 1 Chapter II. Attractor s o f Autonomous Partia l Differentia l Equation s 2 7 1. Functio n space s an d embeddin g theorem s 2 8 2. Operato r semigroups. Basi c notion s 3 5 3. Attractor s o f semigroups 3 7 4. Reaction-diffusio n system s 3 8 5. 2 D Navier-Stokes syste m 4 6 6. Hyperboli c equatio n wit h dissipatio n 4 9 Chapter III. Dimensio n o f Attractors 5 1 1. Fracta l an d Hausdorf f dimensio n 5 1 2. Dimensio n o f invariant set s 5 3 3. Optimizatio n o f the boun d fo r th e fracta l dimensio n 5 9 4. Applicatio n t o semigroup s 6 2 5. Application s t o evolutio n equation s 6 5 6. Lowe r bound s fo r th e dimensio n o f attractors 7 3 Part 2. Attractor s o f Non-autonomous Equation s 7 7 Chapter IV. Processe s an d Attractor s 7 9 1. Symbol s o f non-autonomous equation s 8 0 2. Cauch y proble m an d processe s 8 2 3. Unifor m attractor s 8 3 4. Haraux' s exampl e 8 5 5. Th e reduction t o a semigroup 8 6 6. O n unifor m (w.r.t. rgl) attractor s 9 2 Chapter V. Translatio n Compac t Function s 9 5 1. Almos t periodi c function s 9 5 2. Translatio n compac t function s i n C(IR ; M) 9 7 3. Translatio n compac t function s i n L l c (R; ) 10 1 4. Translatio n compac t function s i n L ^(R; ) 10 4 5. Othe r translatio n compac t function s 10 6

x CONTENT S Chapter VI. Attractor s o f Non-autonomous Partia l Differentia l Equation s 10 7 1. 2 D Navier-Stokes syste m 10 7 2. Non-autonomou s reaction-diffusio n system s 11 4 3. Non-autonomou s Ginzburg-Landa u equatio n an d other s 11 8 4. Non-autonomou s dampe d hyperboli c equation s 11 9 Chapter VII. Semiprocesse s an d Attractor s 12 9 1. Familie s o f semiprocesses an d thei r attractor s 12 9 2. O n the reductio n t o the semigrou p 13 2 3. Non-autonomou s equation s wit h tr.c. o n R + symbol s 13 5 4. Prolongation s o f semiprocesses t o processe s 13 7 5. Asymptoticall y almos t periodi c function s 14 0 6. Non-autonomou s equation s wit h a.a.p. symbol s 14 3 7. Cascad e system s an d thei r attractor s 14 6 Chapter VIII. Kernel s o f Processes 14 9 1. Propertie s o f kernels 14 9 2. O n the dimensio n o f connected set s 15 3 3. Dimensio n estimate s fo r kerne l section s 15 5 4. Application s t o non-autonomous equation s 15 7 Chapter IX. Kolmogoro v ^-Entrop y o f Attractors 16 3 1. Estimate s o f the e-entrop y 16 3 2. Fracta l dimensio n o f attractors 17 3 3. Functiona l dimensio n an d metri c orde r 17 6 4. Application s t o evolutio n equation s 17 7 5. 77-entrop y an d metri c orde r o f E 18 8 6. ^-entrop y i n the extende d phas e spac e 19 2 Part 3. Trajector y Attractor s 19 7 Chapter X. Trajector y Attractor s o f Autonomou s Ordinar y Differentia l Equations 19 9 1. Preliminar y proposition s 20 0 2. Constructio n o f the trajectory attracto r 20 3 3. Example s o f equations 20 5 4. Dependenc e o n a parameter 20 7 Chapter XI. Attractor s i n Hausdorf f Space s 21 1 1. Som e topological preliminarie s 21 1 2. Semigroup s i n topological space s an d attractor s 21 4 3. Application s t o {M., X)-attractors 21 8 Chapter XII. Trajector y Attractor s o f Autonomous Equation s 21 9 1. Trajector y space s o f evolution equation s 21 9 2. Existenc e o f trajectory attractor s 22 2 3. Trajector y an d globa l attractor s 22 4 Chapter XIII. Trajector y Attractor s o f Autonomou s Partia l Differentia l Equations 22 9 1. Autonomou s Navier-Stoke s system s 22 9

CONTENTS x i 2. Autonomou s hyperboli c equation s 24 2 3. Hyperboli c equation s dependin g o n a parameter 25 1 Chapter XIV. Trajector y Attractor s o f Non-autonomous Equation s 25 9 1. Non-autonomou s equations, thei r symbols, an d trajector y space s 26 0 2. Existenc e o f uniform trajector y attractor s 26 2 3. Equation s wit h symbol s o n the semiaxi s 26 6 Chapter XV. Trajector y Attractor s o f Non-autonomou s Partia l Differential Equation s 26 9 1. Non-autonomou s Navier-Stoke s system s 26 9 2. Trajector y attracto r fo r 2 D Navier-Stokes syste m 27 8 3. Reac t ion-diffusion system s 28 2 4. Non-autonomou s hyperboli c equation s 29 2 Chapter XVI. Approximatio n o f Trajectory Attractor s 29 9 1. Trajector y attractor s o f non-autonomou s ordinar y differential equation s 29 9 2. Trajector y attractor s o f Galerki n system s 30 2 3. Convergenc e o f trajectory attractor s o f Galerkin system s 30 3 Chapter XVII. Perturbatio n o f Trajectory Attractor s 30 5 1. Trajector y attractor s o f perturbed equation s 30 5 2. Dependenc e o f trajectory attractor s o n a small parameter 30 7 Chapter XVIII. Averagin g o f Attractor s o f Evolutio n Equation s wit h Rapidly Oscillatin g Term s 31 1 1. Averagin g o f rapidly oscillatin g function s 31 1 2. Averagin g o f equations an d system s 32 0 3. Perturbatio n wit h rapidl y oscillatin g term s 34 1 Appendix A. Proof s o f Theorems II. 1.4 an d II. 1.5 34 5 Appendix B. Lattice s an d Covering s 34 9 Bibliography 35 3 Index 361

This page intentionally left blank

Bibliography P.S.Alexandrov, Introduction to the general theory of sets and functions, Moscow, Goste - hizdat, 1948 ; German transl., Deutsche r Verla g de r Wissenschaften, Berlin, 1964. L.Amerio an d G.Prouse, Abstract almost periodic functions and functional equations, Va n Nostrand, Ne w York, 1971. J.Arrieta, A.N.Carvalho, and J.K.Hale, A damped hyperbolic equation with critical exponent, Comm. Partia l Diff. Equation s 1 7 (1992), 841-866. A.V.Babin an d M.I.Vishik, Attractors of evolutionary partial differential equations and estimates of their dimensions, Uspekh i Mat. Nau k 3 8 (1983), no. 4, 133-187 ; English transl., Russian Math. Survey s 3 8 (1983), no. 4, 151-213., Regular attractors of semigroups and evolution equations, J. Math. Pure s Appl. 6 2 (1983), no. 4, 441-491., Unstable invariant sets of semigroups of non-linear operators and their perturbations, Uspekh i Mat. Nauk, 41 (1986 ) no. 4, 3-34; Englis h transl. i n Russian Math. Surveys, 41 (1986)., Uniform finite-parameter asymptotics of solutions of nonlinear evolutionary equations, J. Math. Pure s Appl. 6 8 (1989), 399-455., Attractors of evolution equations, Nauka, Moscow, 1989 ; Englis h transl., North - Holland, Amsterdam, 1992. J.M.Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlin. Sci. 7 (1997), 475-502. M.V.Bartucelli, P.Constantin, C.R.Doering, J.D.Gibbon, an d M.Gisselfalt, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Physic a D, 4 4 (1990), 412-444. O.V.Besov, V.P.Il'in, an d S.M.Nikol'skiT, Integral representations of functions and embedding theorems, Nauka, Moscow, 1975 ; Englis h transl., Winsto n & Sons, Washington, DC, 1979. J.E.Billotti an d J.P.LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 7 7 (1971), 1082-1088. M.A.Blinchevskaya an d Yu.S.Ilyashenko, Estimate for the entropy dimension of the maximal attractor for k-contracting systems in an infinite-dimensional space, Russia n J. Math. Physics 6 (1999), no. 4, 20-26. V.A.Boichenko, A.Pranz, G.A.Leonov, an d V.Reitmann, Hausdorff and fractal dimension estimates for invariant sets of non-injective maps, Z. Anal. Anwendunge n 1 7 (1998), 207-223. S.M.Borodich, On the behaviour as t > +o o of solutions of some non-autonomous equations, Vestni k Mosk. Univ. Ser.l, Mat. Mekh. 4 5 (1990), no. 6, 51-53 ; Englis h transl., Moscow Univ. Math. Bull. 45 (1990), no. 6, 19-21. F.V.Bunkin, N.A.Kirichenko, an d B.S. Kuk'yanchik, Self-organization phenomena in laser thermochemistry, Nonlinea r waves. Dynamic s an d evolution, A.V.Gaponov-Grekho v an d M.I.Rabinovich (eds.), Nauka, Moscow, 1989, 113-12 6 (Russian). A.Calsina, X.Mora, an d J.Sola-Morales, The dynamical approach to elliptic problems in cylindrical domains and a study of their parabolic singular limit, J. Differentia l Equation s 102 (1993), 244-304. N.Chafee an d E.Infante, A bifurcation problem for a nonlinear parabolic equation, J. Appl. Anal. 4 (1974), 17-37. V.V.Chepyzhov an d A.A.Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinea r Anal. 44 (2001), no. 6, Ser. A : Theory, Methods, 811-819. 353

354 BIBLIOGRAPH Y [20] V.V.Chepyzho v an d A.Yu.Goritsky, Global integral manifolds with exponential tracking for nonautonomous equations, Russia n J. Math. Physic s 5 (1996), no. 1, 9-28. [21], Explicit construction of integral manifolds with exponential tracking, Appl. Anal. 71 (1999), no. 1-4, 237-252. [22] V.V.Chepyzho v an d M.I.Vishik, Attractors of nonautonomous dynamical systems and estimations of their dimension, Mat. Zametk i 5 1 (1992), no. 6, 141-143 ; English transl., Math. Notes 5 1 (1992), no. 6, 622-624. [23], Non-autonomous dynamica l system s an d thei r attractors, Appendi x i n th e book : M.I.Vishik, Asymptotic behaviour of solutions of evolutionary equations, Cambridg e Univ. Press, Cambridge, 1992. [24], Non-autonomous evolution equations with almost periodic symbols, Rendicont i Sem. Mat. Fis. d i Milan o LXXII (1992), 185-213. [25], Attractors for non-autonomous evolution equations with almost periodic symbols, C. R. Acad. Sci. Paris Ser. I 316 (1993), 357-361. [26], Families of semiprocesses and their attractors, C. R. Acad. Sci. Pari s Ser. I 31 6 (1993), 441-445. [27], Dimension estimates for attractors and kernel sections of non-autonomous evolution equations, C. R. Acad. Sci. Paris Ser. I 317 (1993), 367-370. [28], Non-autonomous evolution equations and their attractors, Russia n J. Math. Physic s 1 (1993), no. 2, 165-190. [29], A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations, Indian a Univ. Math. J. 4 2 (1993), no. 3, 1057-1076. [30], Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. 7 3 (1994), no. 3, 279-333. [31], Periodic processes and non-autonomous evolution equations with time-periodic terms, Topol. Method s Nonlinea r Anal. 4 (1994), no. 1, 1-17. [32], Attractors of non-autonomous evolution equations with translation-compact symbols, Operato r Theory : Advance s an d Applications, vol. 78, Bikhauser, Boston, 1995, pp. 49-60. [33], Attractors of periodic processes and estimates of their dimensions, Mat.Zametk i 57 (1995), no. 2, 181-202 ; Englis h transl., Math. Note s 5 7 (1995), no. 2, 127-140. [34], Non-autonomous evolutionary equations with translation compact symbols and their attractors, C. R. Acad. Sci. Pari s Ser. I 321 (1995), 153-158. [35], Attractors of non-autonomous 3D Navier-Stokes system, Uspekhi. Mat. Nau k 5 0 (1995), no. 4, 151 ; English transl., Russia n Math. Survey s 5 0 (1995), 807. [36], Attractors of non-autonomous evolutionary equations of mathematical physics with translation compact symbols, Uspekhi. Mat. Nau k 50 (1995), no. 4, 146 147 ; English transl., Russian Math. Survey s 5 0 (1995), 802-803. [37], Trajectory attractors for evolution equations, C. R. Acad. Sci. Pari s Ser. I 32 1 (1995), 1309-1314. [38], Trajectory attractors for reaction-diffusion systems, Topol. Method s Nonlinea r Anal. 7 (1996), no. 1, 49-76. [39], Trajectory attractors for 2D Navier-Stokes systems and some generalizations, Topol. Method s Nonlinea r Anal. 8 (1996), 217-243. [40], Evolution equations and their trajectory attractors, J. Math. Pures Appl. 76 (1997), no. 10, 913-964. [41], Kolmogorov e-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems, Mat. Sb. 18 9 (1998), no. 2, 81-110 ; Englis h transl., Sb. Math. 189 (1998), 235-263. [42], Perturbation of trajectory attractors for dissipative hyperbolic equations, Operato r Theory: Adv. Appl. 11 0 (1999), 33-54. [43], Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Mat. Sb. 19 2 (2001), no. 1, 16-53 ; Englis h transl. i n Sb. Math. 19 2 (2001). [44] I.D.Chueshov, Global attractors of nonlinear problems of mathematical physics, Us - pekhi. Mat. Nauk 4 8 (1993), no. 3, 135-162 ; Englis h transl., Russia n Math. Survey s 4 8 (1993), no. 3, 133-161.

BIBLIOGRAPHY 355 [45] P.Constanti n an d C.Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pur e Appl. Math. 3 8 (1985), 1-27., Navier-Stokes equations, Univ. Chicag o Press, Chicag o an d London, 1989. P.Constantin, C.Foias, an d R.Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc. 53 (1985)., On the dimension of the attractors in two-dimensional turbulence, Physic a D 3 0 (1988), 284-296. J.H.Conway and N.J.A.Sloan, Sphere packing, lattices and groups, Springer-Verlag, Ne w York-Berlin-Heidelberg, 1988. R.Courant an d D.Hilbert, Methods of mathematical physics, Interscience s Publishers, Ne w York, 1953. C.M.Dafermos, Semiflows generated by compact and uniform processes, Math. Systems Theory, 8 (1975), 142-149., Almost periodic processes and almost periodic solutions of evolutional equations, Proc. Internationa l Symp., Univ. o f Florida, Academi c Press, Ne w Yor k,1977, 43-57. C.R.Doering, J.D.Gibbon, D.D.Holm, an d B.Nicolaenco, Low-dimensional behaviour in the complex Ginzburg-Landau equation, Nonlinearit y 1 (1988), 279-309. C.R.Doering, J.D.Gibbon, an d C.D.Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physic a D 7 1 (1994), 285-318. A.Douady an d J.Oesterle, Dimension de Hausdorff des attracteurs, C. R. Acad. Sci. Pari s Ser. A 290 (1980), 1135-1138. Yu.A.DubinskiT, Weak convergence in nonlinear elliptic and parabolic equations, Mat. Sb. 67 (1965), no. 4, 609-642; Englis h transl. i n Math. USSR-Sb. 67, 4 (1965). N.Dunford an d J.T.Schwartz, Linear operators, Wiley-Interscience, New-York, 1971. L.Dung an d H.L.Hsu, On a parabolic system modelling microbial competition in an unmixed bio-reactor, J. Differentia l Equation s 13 0 (1996), no. 1, 59-91. L.Dung, Global attractors and steady state solutions for a class of reaction-diffusion systems, J. Differentia l Equation s 14 7 (1998), 1-29. A.Eden, C.Foias, an d R.Temam, Local and global Lyapunov exponents, J. Dynam. Differen - tial Equations. 3 (1991), no. 1, 133-177. A.Eden, C.Foias, B.Nicolaenco, an d R.Temam, Exponential attractors for dissipative evolution equations, Wiley, Ne w York, 1995. D.E.Edmunds an d A.A.Ilyin, On some multiplicative inequalities and approximation numbers, Quart. J. Math. 4 5 (1994), no. 2, 159-179., Asymptotically sharp multiplicative inequalities, Bull. London Math. Soc. 27 (1995), 71-74. P.Fabrie an d A.Miranville, Exponential attractors for nonautonomous first-order evolution equations, Discret e Continou s Dynamica l Syst. 4 (1998), no. 2, 225-240. H.Federer, Geometric measure theory, Springer-Verlag, New-York, 1969. E.Feireisl, Attractors for wave equations with nonlinear dissipation and critical exponent, C. R. Acad. Sci. Pari s Ser. I 315 (1992), 551-555., Exponentially attracting finite-dimensional sets for the processes generated by nonautonomous semilinear wave equations, Funkciala j Ekvacio j 3 6 (1993), 1-10., Finite-dimensional behaviour of a nonautonomous partial differential equation: Forced oscillations of an extensible beam, J. Differentia l Equation s 10 1 (1993), 302-312. R.J.Field an d R.M.Noyes, Oscillations in chemical systems. Par t 4. Limit cycle behaviour in a model of a real chemical reaction, J. Chem. Phys. 6 0 (1974), 1877-1884. B.Fiedler, Global attractors of one-dimensional parabolic equations: Sixteen examples, Equadiff8 (Bratislava, 11993). Tatra Mt. Math. Publ. 4 (1994), 67-92. B.Fiedler an d C.Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Differentia l Equations 12 5 (1996), 239-281. B.Fiedler an d M.I.Vishik, Quantitative homogenization of global attractors for reactiondiffusion systems with rapidly oscillating terms, Preprint, Frei e Universitat-Berlin, 2000. R.Fitz-Hugh, Impulses and physiological states in theoretical models of nerve membranes, Biophys. J. 1 (1961), 445-446. C.Foias an d R.Temam, Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pure s Appl. 5 8 (1979), no. 3, 339-368.

356 BIBLIOGRAPH Y [75], Finite parameter approximative structure of actual flows, Nonlinea r Problems : Present an d Future, (Lo s Alamos, NM, 1981), A.R.Bishop, D.K.Campbell, an d B.Nicolaenc o (eds.), North-Holland, Amsterdam, 1982. pp. 317-32 7 [76], Asymptotic numerical analysis for the Navier-Stokes equations, Nonlinea r Dynam - ics and Turbulence, G.I.Barenblatt, G.Iooss, an d D.D.Josep h (eds.), Pitman, London, 1983, pp. 139-155. [77] F.Gazzol a an d V.Pata, A uniform attractor for a non-autonomous generalized Navier- Stokes equation, J. Anal. Appl. 1 6 (1997), no. 2, 435-449. [78] F.Gazzol a an d M.Sardella, Attractors for families of processes in weak topologies of Banach spaces, Discret e Continuou s Dynam. Syst. 4 (1998), no. 3, 455-466. [79] J.M.Ghidagli a an d B.Heron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physic a D 2 8 (1987), 282-304. [80] J.M.Ghidagli a an d R.Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pure s Appl. 6 6 (1987), 273-319. [81] M.Gobbino, an d M.Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equation s 13 3 (1997), 1-14. [82] A.Yu.Goritsk y an d M.I.Vishik, Integral manifolds for nonautonomous equations, Rend. Academia Nazionale delle Scienze detta de i XL, Mem. Mat. Appl., 115, XXI (1997), fasc.l, 109-146. [83] P.Grassberge r an d I.Procaccia, Dimensions and entropies of strange attractors from a fluctuation dynamics approach, Physic a D 1 3 (1984), 34-54. [84] J.K.Hale, Asymptotic behavior and dynamics in infinite dimensions, Nonlinea r Diff. Equa - tions, (J.K.Hal e an d P.Martinez-Amores, eds.), Researc h Note s Math., vol. 132, Pitman, Boston, 1985, pp. 1-42. [85], Asymptotic behaviour of dissipative systems, Amer. Math. Soc, Providence, RI, 1988. [86] J.K.Hal e an d J.Kato, Phase space of retarded equations with infinite delay, Tohok u Math. J. 2 1 (1978), 11-41. [87] J.K.Hal e an d G.Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differentia l Equation s 7 3 (1988), 197-214. [88], Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dynam. Differentia l Equation s 2 (1990), 19-67. [89] J.K.Hal e an d S.M.Verduyn-Lunel, Averaging in infinite dimensions, J. Integra l Equation s Appl. 2 (1990), no. 4, 463-494. [90] A.Haraux, Two remarks on dissipative hyperbolic problems, Nonlinea r Partia l Differentia l Equations and their Applications, Colleg e de France Seminar, vol. 7, (H.Brezis and J.L.Lions, eds.), Researc h Note s Math., vol. 112, Pitman, Boston, MA, 1985, pp. 161-179. [91], Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Comm. Part. Differentia l Equation s 13(1988), 1383-1414. [92], Systemes dynamiques dissipatifs et applications, Masson, Paris, Milan, Barcelona, Rome, 1991. [93] P.Hartman, Ordinary differential equations, Wiley, Ne w York, 1964. [94] D.Henry, Geometric theory of semilinear parabolic equations, Lectur e Notes Math., vol. 840, Springer-Verlag, Berlin-Heidelberg-Ne w York, 1981. [95] E.Hopf, Uber die Anfangswertaufgable fur die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231. [96] S.-B. Hs u an d P.Waltman, On a system of reaction-diffusion equations arising from competition in the unstirred chemostat, SIA M J. Appl. Math. 5 3 (1993), 1026-1044. [97] L.Hormander, Linear partial differential operators, Springer-Verlag, Berlin, 1963. [98] B.Hunt, Maximal local Lyapunov dimension bounds the box dimension of chaotic attractors, Nonlinearity 9 (1996), 845-852. [99] Yu.S.Ilyashenko, Weakly contracting systems and attractors of Galerkin approximation for the Navier-Stokes equations on a two-dimensional torus, Uspekh i Mekhaniki 5 (1982), no. 1, 31-63; Englis h transl., Select a Math. Sov. 1 1 (1992), no. 3, 203-239. [100] A.A.Ilyin, Lieb-Thirring inequalities on the N-sphere and in the plane and some applications, Proc. Londo n Math. Soc. (3 ) 67 (1993), 159-182. [101], Attractors for Navier-Stokes equations in domain with finite measure, Nonlinea r Anal. Theor y Method s Appl. 2 7 (1996), no. 5, 605-616.

BIBLIOGRAPHY 357 102], Averaging of dissipative dynamical systems with rapidly oscillating right-hand sides, Mat. Sb. 18 7 (1996), no. 5, 15-58 ; English transl., Sb. Math. 18 7 (1996), no. 5, 635-677. 103], Global averaging of dissipative dynamical systems, Rend. Academi a Nazionale dell e Scienze detta de i XL, Mem. Mat. Appl. 116, XXII (1998), fasc.l, 167-191. 104], Best constants in Sobolev inequalities on the sphere and in Euclidean space, J. London Math. Soc. 5 9 (1999), no. 2, 263-286. 105] L.V.Kapitanskii, Minimal compact global attract or for a damped semilinear wave equations, Comm. Part. Differentia l Equation s 2 0 (1995), no. 7-8, 1303-1323. 106] L.V.Kapitanski i an d I.N.Kostin, Attractors of nonlinear evolution equations and their approximations, Algebr a i Analiz 2 (1990), no. 1, 114-140 ; Englis h transl., Leningra d Math. J. 2 (1991), 97-117. 107] J.L.Kapla n an d J.A.Yorke, Chaotic behaviour of multidimensional difference equations, Functional Differentia l Equation s an d Approximation s o f Fixe d Point s (H.O. Peitge n an d H.O. Walter eds.), Lecture Notes Math., vol. 730, Springer-Verlag, Berlin, 1979, pp. 204-227. 108] A.N.Kolmogoro v an d S.V.Fomin, Elements of the theory of functions and functional analysis, Nauka, Moscow, 1981 ; English transl., o f the secon d edition, Dover, Ne w York, 1975. 109] A.Kolmogoro v an d V.Tikhomirov, e-entropy and e-capacity of sets in functional spaces, Uspekhi Math. Nau k 1 4 (1959), no. 2, 3-86 ; Englis h transl. i n Selecte d Work s o f A.N.Kolmogorov, vol. Ill, Kluwer, Dordrecht, 1993. 110] N.Kopel l an d L.N.Howard, Plane wave solutions to reaction-diffusion equations, Studi a Appl. Math. 5 2 (1973), no. 5, 291-328. Ill] I.P.Kornfeld, Ya.G.Sinai, S.V.Fomin, Ergodic theory, Nauka, Moscow, 1980 ; English transl., Springer-Verlag, Ne w York, 198 2 112] Y.Kuramot o an d T.Tsuzuki, On the formation of dissipative tructures in reaction-diffusion systems, Reduction perturbation approach, Progr. Theor. Phys. 5 4 (1975), 687-699. 113] O.A.Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Nauka, Moscow, 1970 ; English transl., Gordo n an d Breach, Ne w York, 1969. 114], On the dynamical system generated by the Navier-Stokes equations, Zap. Nauchn. Sem. LOM I 2 7 (1972), 91-115 Englis h transl., J. Sovie t Math. 3 4 (1975), 458-479. 115], On finite dimension of bounded invariant sets for the Navier-Stokes system and other dynamical systems, Zap. Nauchn. Sem. LOM I 11 1 (1982), 57-73 ; Englis h transl., J. Soviet Math. 2 8 (1982), no. 5, 714-725. 116], On finding the minimal global attractors for the Navier-Stokes equations and other PDEs, Uspekh i Mat. Nau k 42 (1987), no. 6, 25-60; English transl. i n Russian Math. Survey s 42 (1987). 117], Attractors for semigroups and evolution equations, Leizion i Lincei, Cambridg e Univ. Press, Cambridge, New-York, 1991. 118] J.LaSalle, Stability theory and invariance principles, Dynamica l systems, vol. 1, Academi c Press, Ne w York, 1976, pp. 211-222. 119] G.A.Leonov, Lyapunov dimension formulas for Henon and Lorenz attractors, Algebr a an d Analysis 1 3 (2001), no. 3, pp. 1-12 ; Englis h transl. i n St.Petersbur g Math. J. 1 3 (2002), no. 2. 120] B.Levita n and V.Zhikov, Almost periodic functions and differential equations, Mosco w Univ. Press, 1978 ; English transl., Cambridg e Univ. Press, Cambridge, 1982. 121] J.Leray, Etude de diverses equations integrales non lineaires et de quelques problemes que pose Vhydrodynamique, J. Math. Pure s Appl. 1 2 (1933), 1-82. 122], Essai sur les mouvements plans d'un liquide visqueux que limitent des parois, J. Math. Pure s Appl. 1 3 (1934), 331-418. 123], Essai sur le mouvement d'un liquide visqueux emplissant Vespace, Act a Math. 6 3 (1934), 193-248. 124] P.L i and S.-T.Yau, On the Schrodinger equation and the eigenvalue problem, Comm. Math. Phys. 8 (1983), 309-318. 125] E.Lie b an d W.Thirring, Inequalities for the moments of the eigenvalues of Schrodinger equations and their relations to Sobolev inequalities, Studie s i n Mathematica l Physics, Es - says i n Honou r o f Valentin e Bargmann, Princeto n Univ. Press, Princeton, NJ, 1976, pp. 269-303. [126] J.-L.Lion s an d E.Magenes, Problemes aux limites non homogenes at applications, vol. 1, Paris, Dunod, 1968.

358 BIBLIOGRAPH Y [127] J.-L.Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969. [128] V.X.Liu, A sharp lower bound for the Hausdorff dimension of the global attractor of the 2D Navier-Stokes equations, Comm. Math. Phys. 15 8 (1993), 327-339. [129] E.N.Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130-141. [130] J.Male k an d J.Necas, A finite-dimensional attractor for three dimensional flow of incompressible fluids, J. Differentia l Equation s 12 7 (1996), 498-518. [131] R.Mane, On the dimension of the compact invariant sets of certain nonlinear maps, Lectur e Notes Math., vol. 898, Springer-Verlage, New-York, 1981. [132] M.Marion, Attractors for reaction-diffusion equations: existence and estimate of their dimension, Appl. Anal. 2 5 (1987), 101-147. [133], Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIA M J. Math. Anal. 2 0 (1989), 816-844. [134] L.D.Meshalki n an d Ya.G.Sinai, Investigation of the stability of a steady-state solution of a system of equations for the plane movement of an incompressible viscous fluid, J. Appl. Math. Phys. 2 5 (1961), 1140-1143. [135] G.Metivier, Valeurs propres d'operateurs definis sur la restriction de systemes variationnels a des sous-espaces, J. Math. Pure s Appl. 5 7 (1978), 133-156. [136] A.Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearit y 1 0 (1997), 199-222. [137] R.K.Miller, Almost periodic differential equations as dynamical systems with applications to the existence of almost periodic solutions, J. Differentia l Equation s 1 (1965), 337-395. [138] R.K.Mille r an d G.R.Sell, Topological dynamics and its relation to integral and nonautonomous systems. Intern. Symposium, I, Academi c Press, Ne w York, 1976, pp. 223-249. [139] A.Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Ser. I 328 (1999), 145-150. [140] A.Miranvill e an d X.Wang, Attractors for nonautonomous nonhomogeneous Navier-Stokes equations, Nonlinearit y 1 0 (1997), 1047-1061. [141] X.Mor a an d J.Sol a Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, Dynamic s o f Infinite - dimensional System s (N.S.Cho w and J.K.Hale, eds.), Springer-Verlag, Berlin, 1987, pp. 187-210. [142] J.Nagumo, S.Arimoto, an d S.Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. I. R. E. 50 (1962), 2061-2070; Bistable transmission lines, Trans. IEEE Circui t Theory CT-1 2 (1965), 400-412. [143] Sh.M.Nasibov, On optimal constants in some Sobolev inequalities and their applications to a nonlinear Schrodinger equation, Dokl. Akad. Nau k SSSR, 30 7 (1989), 538-542 ; Englis h transl., Sovie t Math. Dokl. 40 (1990), 110-115. [144] V.Pata, G.Prouse, an d M.I.Vishik, Travelling waves of dissipative non-autonomous hyperbolic equations in a strip, Adv. Differentia l Equation s 3 (1998), 249-270. [145] W.H.Rua n an d C.V.Pao, Asymptotic behaviour and positive solutions of a chemical reaction diffusion system, J. Math. Anal. Appl. 16 9 (1992), 157-178. [146] G.R.Sell, Non-autonomous differential equations and topological dynamics I, II, Trans. Amer. Math. Soc. 12 7 (1967), 241-262, 263-283. [147], Lectures on topological dynamics and differential equations, Van-Nostrand, Prince - ton, NJ, 1971. [148], Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equation s 8 (1996), 1-33. [149] M.W.Smiley, Regularity and asymptotic behavior of solutions of nonautonomous differential equations, J. Dynam. Differentia l Equation s 7 (1995), 237-262. [150] S.L.Sobolev, Some applications of functional analysis to mathematical physics, Nauka, Moscow, 1988 ; English transl., Amer. Math. Soc, Providence, RI, 199 1 [151] L.Schwartz, Distributions a valuers vectorielles, I, II, Ann. Inst. Fourier (Grenoble ) 7 (1957), 1-141; 8 (1958), 1-209. [152] J.Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, Ne w York, 1983. [153] V.A.Solonnikov, On the boundary-value problems for linear parabolic systems of differential equations of the general type. Trud y Mat. Inst. Steklov. 8 3 (1965), 3-163 ; Englis h transl., Proc. Steklo v Math. Inst. 8 3 (1967).

BIBLIOGRAPHY 359 G.Stampacchia, Eqations elliptiques du second ordre a coefficients discontinus, Presse s Univ. Montreal, 1966. E.M.Stein, Singular integrals and differentiability properties of functions, Princeto n Univ. Press, Princeton, NJ, 1970. Y. Takeuchi, Global dynamical properties of Lotka-Volterra systems, Worl d Scientific, Sin - gapore, 1996. R.Temam, On the theory and numerical analysis of the Navier-Stokes equations, Amer. Math. Soc, Providence, RI, 2001., Navier-Stokes equations and nonlinear functional analysis, S I AM, Philadelphia, 1983, 1995., Infinite-dimensional dynamical systems in mechanics and physics, Applie d Math - ematics Series, vol. 68, Springer-Verlag, Ne w York, 1988, 1997. P.Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dynam. Differentia l Equation s 4 (1992), 127-159. H.Triebel, Interpolation theory, functional spaces, differential operators, North-Holland, Amsterdam-New York, 1978. H.Veldcamp, Ecological studies with chemostat, Adv. Microbia l Ecol. 1 (1977), 59-95. M.I.Vishik, Asymptotic behaviour of solutions of evolutionary equations Cambridg e Univ. Press, Cambridge, 1992. M.I.Vishik an d A.V.Fursikov, Mathematical problems of statistical hydromechanics, Kluwer, Dordrecht, 1987. M.I.Vishik an d S.V.Zelik, The trajectory attractor of a non-linear elliptic system in a cylindrical domain, Mat. Sb. 18 7 (1996), no. 12, 21-56 ; Englis h transl., Sb. Math. 18 7 (1996), 1755-1789. V.V.Volter an d I.E.Salnikov, Work regime stability of chemical reactorskhimiya, Moscow, 1972. (Russian ) P.Waltman, Competition models in population biology, SIAM, Philadelphia, 1983. M.Weinstein, Nonlinear Schrodinger equations and sharp interpolation estimates, Comm. Math. Phys. 8 7 (1983), 567-576. V.I.Yudovich, Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid, J. Appl. Math. Mech. 2 9 (1965). Zhi-Min Chen, A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors, Chaos, Soliton s an d Fractal s 3 (1993), 575-582. M.Ziane, Optimal bounds on the dimension of the attractor of the Navier-Stokes equations, Physica D 10 5 (1997), 1-19.

This page intentionally left blank

Index (E x E, )-continuous family, 8 8 (e^c,s)-closed family, 26 2 e-entropy, 51, 16 5 e-period, 9 5 d-dimensional Hausdorf f measure, 5 2 fc-dimensional torus, 8 2 m-dimensional trace, 6 2 Almost periodi c function, 81, 95 asymptotically, 133, 14 0 in the Stepano v sense, 9 7 Attracting property, 8 4 Attractor, 19, 217, 21 8 (A4,1)-attractor, 21 8 global, 19, 37, 225, 239, 24 9 uniform, 26 5 Lorenz, 6 5 non-uniform, 8 5 trajectory, 203, 22 3 uniform, 26 2 uniform, 84, 9 3 Average in Loo(Q), 31 2 in L P, W (Q), 31 1 time uniform, 31 6 Averaging spatial, 31 1 time, 31 6 Backward uniquenes s property, 13 8 Belousov-Zhabotinsky equations, 4 3 Bochner-Amerio criterion, 9 6 Cascade system, 13 3 Chafee-Infante equation, 41, 330 Closure, 21 2 Compactness criterion in C{R;M), 9 8 in L l p oc (R;S), 10 1 inl^(r; ), 10 5 theorems, 3 1 Compactum, 21 4 Complete trajectory, 19, 38, 88, 218, 223, 263 Continuous mapping, 21 3 Convergent sequence, 21 2 *-weakly, 3 2 weakly, 3 2 Covering, 21 2 density, 34 9 radius, 34 9 Derivative i n the distributio n sense, 3 1 Differential inequality, 3 5 Dimension fractal, 52, 17 3 functional, 17 6 Hausdorff, 5 2 local fractal, 17 5 functional, 17 6 Lyapunov, 6 2 Dissipative wav e equation, 33 4 Dissipativity condition, 1 7 Douady-Oesterle theorem, 5 5 Energy norm, 5 0 Equilibrium point, 2 0 First Uryso n theorem, 21 4 Fitz-Hugh-Nagumo equations, 4 1 Frechet-Uryson space, 21 3 Fundamental parallelepiped, 34 9 region, 34 9 Gagliardo-Nirenberg inequality, 3 0 Galerkin approximation, 23, 30 2 method, 231, 284 Ginzburg-Landau equation, 42, 118, 32 8 Grashof number, 47, 23 5 Gronwall's inequality, 3 4 Group, 3 6 Holder's inequality, 3 4 Hahn-Banach theorem, 3 2 Haraux's example, 8 5 Hausdorff dimension, 5 2 space, 21 3 Hull, 81, 96, 132, 13 5 Hyperbolic equatio n 361

362 INDEX damped, 11 9 dissipative, 4 9 with dissipation, 49, 71, 159, 185, 292, 306 Inductive limit, 22 1 Instability index, 7 3 Interpolation inequality, 3 0 Kernel of equation, 20, 223, 26 3 of process, 88, 14 9 of semigroup, 38, 21 8 section, 20, 38, 88, 21 8 Kolmogorov e-entropy, 16 4 Ladyzhenskaya's inequality, 46, 230, 23 5 Lattice, 34 9 cube, 35 1 determinant, 34 9 enerating matrix, 34 9 main Voronoi, 35 1 Lieb-Thirring inequality, 6 9 Lipschitz condition, 16 5 Lorenz attractor, 6 5 system, 2 3 Lotka-Volterra system, 4 4 Lyapunov dimension, 6 2 uniform exponents, 6 1 Metric order, 17 6 local, 17 6 Minimality property, 8 4 Multiplicative properties, 8 3 Navier-Stokes system, 26 9 2D, 46, 68, 74, 107, 157, 177, 239, 278, 323 3D, 229, 305, 32 0 NikoPskii space, 27 9 Periodic orbit, 2 0 Point adherent, 21 1 limit, 21 2 Process, 82, 8 3 bounded, 8 3 family o f processes, 8 4 periodic, 8 7 Quasidifferential, 5 3 Quasiperiodic function, 82, 9 6 solution, 2 0 symbol, 8 8 Reaction-diffusion equation, 3 8 system, 66, 75, 114, 158, 181, 282, 32 5 Second axio m o f count ability, 21 2 Second Uryso n theorem, 21 4 Semigroup, 18, 36, 21 4 (, )-bounded, 3 7 (E, E) -continuous, 3 7 asymptotically compact, 3 7 compact, 3 7 identity, 3 6 Semiprocess, 12 9 Set (.M,1)-attracting, 21 8 u;-limit, 19, 38, 130, 21 5 absorbing, 18, 37, 8 3 attracting, 37, 83, 22 3 count ably precompact, 21 4 local unstable, 7 3 precompact, 21 4 relatively dense, 9 5 uniformly absorbing, 8 4 attracting, 84, 92, 26 2 Sets closed, 21 1 open, 21 1 Sine-Gordon equation, 4 9 Sobolev embeddin g theorem, 2 9 Space compact, 21 4 count ably compact, 21 4 Prechet-Uryson, 21 3 Hausdorff, 21 3 metrizable, 21 4 normal, 21 3 separable, 21 2 topological, 21 1 Symbol of equation, 79, 8 0 of process, 8 4 space, 80, 81, 84 Topology base, 21 2 Trajectory, 220, 26 1 attractor, 203, 22 3 uniform, 26 2 space, 200, 219, 26 0 united, 26 1 Translation bounded function, 10 5 compact function, 81, 105, 13 5 group, 26 0 identity, 83, 86 semigroup, 20 0 Uniformly quasidifferentiabl e map, 5 3 sequence, 15 3 Unstable trajectory, 2 0 Volume contractin g condition, 16 5

INDEX 36 3 Voronoi region, 34 9 Weak solution, 230, 242, 28 3 Young's inequality, 3 4