Topological Materials

Similar documents
Prediction of topological materials using firstprinciples band theory computations

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te

arxiv: v3 [cond-mat.mes-hall] 18 Feb 2015

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Symmetry Protected Topological Insulators and Semimetals

arxiv: v1 [cond-mat.mes-hall] 30 Aug 2015

Quantitative Mappings from Symmetry to Topology

arxiv: v1 [cond-mat.mtrl-sci] 13 Jun 2017

Topological Insulators

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles

Introductory lecture on topological insulators. Reza Asgari

Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP

arxiv: v1 [cond-mat.mtrl-sci] 3 Apr 2017

Emergent technology based on Fermi-arcs?

Observation of Dirac node formation and mass acquisition in a topological crystalline insulator

Topological insulator (TI)

Topological Defects inside a Topological Band Insulator

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Dirac fermions in condensed matters

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS. Jan 23, 2012, University of Illinois, Urbana-Chamapaign

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Weyl semimetals from chiral anomaly to fractional chiral metal

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Topological Insulators and Ferromagnets: appearance of flat surface bands

STM studies of impurity and defect states on the surface of the Topological-

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface

Dirac semimetal in three dimensions

From graphene to Z2 topological insulator

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Weyl Semimetals, Fermi Arcs and Chiral Anomalies (A Short Review)

High-throughput discovery of topological materials using spin-orbit spillage

Mapping the unconventional orbital texture in topological crystalline insulators

Topological nonsymmorphic crystalline superconductors

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

arxiv: v1 [cond-mat.supr-con] 27 Feb 2014

The Quantum Spin Hall Effect

Topological Insulators

Hydrogenated ultra-thin tin films predicted as twodimensional

Experimental discovery of a topological Weyl semimetal state in TaP

SUPPLEMENTARY INFORMATION

Spatial-resolved X-ray photoelectron spectroscopy of Weyl semimetal NbAs

Classification of topological quantum matter with reflection symmetries

Weyl semi-metal: a New Topological State in Condensed Matter

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

arxiv: v2 [cond-mat.mes-hall] 15 Feb 2015

Classification of crystalline topological semimetals with an application to Na 3

Band Topology Theory and Topological Materials Prediction

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES)

arxiv: v3 [cond-mat.mtrl-sci] 4 Mar 2017

This article is available at IRis:

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE

Basics of topological insulator

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Topological insulator with time-reversal symmetry

arxiv: v1 [cond-mat.mtrl-sci] 20 Jan 2015

POEM: Physics of Emergent Materials

Physics in two dimensions in the lab

Topological Physics in Band Insulators II

arxiv: v1 [cond-mat.mes-hall] 22 May 2016

5 Topological insulator with time-reversal symmetry

Dirac and Weyl semimetals (DSMs and WSMs) are

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2010

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups

SUPPLEMENTARY INFORMATION

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Effects of biaxial strain on the electronic structures and band. topologies of group-v elemental monolayers

Topological Defects in the Topological Insulator

Nuclear Magnetic Resonance Study of Three Dimensional Dirac Semimetal Na 3 Bi

GUANG BIAN. Department of Physics and Astronomy University of Missouri, Columbia, MO 65201, USA

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation

arxiv: v1 [cond-mat.str-el] 26 Jul 2013

Observation of Unusual Topological Surface States in Half- Heusler Compounds LnPtBi (Ln=Lu, Y)

Spin orbit interaction in graphene monolayers & carbon nanotubes

arxiv: v2 [cond-mat.mes-hall] 21 Oct 2011

Exotic Phenomena in Topological Insulators and Superconductors

Vortex States in a Non-Abelian Magnetic Field

Dirac node lines in a two-dimensional bipartite square lattice

Gregory A. Fiete University of Texas at Austin

Emergent topological phenomena in antiferromagnets with noncoplanar spins

SUPPLEMENTARY INFORMATION

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Transport Experiments on 3D Topological insulators

Quantum spin Hall effect in IV-VI topological crystalline insulators

Topological insulators

Weyl points in a magnetic tetrahedral photonic crystal

Talk 2: Boulder Summer School, July 2016 Dirac and Weyl Semimetals and the chiral anomaly

Topological insulator gap in graphene with heavy adatoms

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

Transcription:

Topological Materials Hsin Lin Institute of Physics, Academia Sinica, Taipei, Taiwan Colloquium : Topological band theory, A. Bansil, H. Lin, T. Das, Reviews of Modern Physics 88, 021004 (2016). May 21, 2018 Donghua University

Institute of Physics, Academia Sinica, Taipei, Taiwan: Cheng-Yi Huang, Liangzi Yao National University of Singapore: Guoqing Chang (Princeton U.), Chuang-Han Hsu, Bahadur Singh Arun Bansil (Northeastern Univ.) BaoKai Wang, Susmita Basak, W. Al-Sawai, Yung Jui Wang M.Z. Hasan s group (Princeton Univ.): Ilya Belopolski, Daniel S. Sanchez, Songtian S. Zhang, Nasser Alidoust, Y. Xia, David Hsieh (Caltech), Guang Bian (Missouri), Madhab Neupane (Central Florida), Hao Zheng (Shanghai Jiao Tong), L. Andrew Wray (NYU), Su-Yang Xu (MIT), Vidya Madhavan (UIUC) Yoshinori Okada (OIST), Ilija Zeljkovic (Boston College) Liang Fu (MIT), Titus Neupert (Zurich) Rajendra Prasad (IITK), Tanmoy Das (Indian Institute of Physics) Feng-Chuan Chuang (NSYSU, Taiwan): Chia-Hsiu Hsu(SUST), Zhi-Quan Huang, Christian Crisostomo Horng-Tay Jeng (NTHU/IOP), Han Hsu (Natl. Central U.), Chung-Yuan Ren(NKNU), Shin-Ming Huang (NSYSU, Taiwan), Tay-Rong Chang (NCKU) : Xiaoting Zhou Gengchiau Liang (NUS ECE) Shengyuan A. Yang (Singapore Univ of Technology and Design)

Outline Introduction: band topology Topological phase transition: TlBi(Se,S) Weyl semimetals: TaAs, LaAlGe New Fermions : RhSi Spin filter and spin separator : Silicence Topological crystalline insulators : SnTe, Ca2As

Energy Topological Insulators Fu & Kane, PRL 100, 096407 (2008) New possibilities for Fundamental physics Spintronics Quantum computing k x k y

Energy Ideal Dirac cone one-to-one spinmomentum locked E=const. k y k x k x k y backward scattering suppressed +k -k

k y Energy backward scattering suppressed k x E=const. k y k x Spin polarized conducting edge states

Energy Band structure One atom Crystal E n (k) E 4 E 3 Energy E 2 E 1 E n k 0 2π/a

Topology Gaussian curvature χ χ=2 χ=0 χ=-2

Energy [ev] Adiabatic transformation χ=2 χ=2 + +? + + EF L Γ X W L Γ X W

Energy [ev] Topological phase transition χ=2 χ=0 Trivial Critical Non-trivial + + 0 + + + EF L Γ X W L Γ X W

Energy Momentum Band inversion trivial critical Non-trivial

Parity analysis (inversion symmetry)

Bulk-boundary Correspondence Theorem Energy Energy Energy Metallic surface/edge states Z 2 :even EF Γ M Z 2 :odd EF Γ M Momentum k x k y time reversal: E(k, )=E(-k, )

Energy Band inversion and edge states (a) m>0 (b) m=0 (c) m<0 band gap (d) m(x)>0 k=k 0 k=k 0 k=k 0 m(x)<0 Momentum k Position x

Bi 2 Se 3, Spin-orbit coupling Y. Xia et al., Nature Physics 5, 398 (2009).

Energy (ev) Surface calculation + surface probe First-principles calculations DFT (KKR, LAPW, Plane Wave) + Angle resolved photoemission (ARPES) Single-Dirac-cone surface states in topological insulator Bi 2 Se 3 Y. Xia et al., Nature Physics 5, 398 (2009).

Finite size slab Ab initio calculations for Electronic Band Structures Wannierization Semi-infinite slab Material-specific Tight-binding Hamiltonians Surface state Calculations Angle-resolved photoemission (ARPES) and Scanning tunneling Spectroscopy (STS)

Weyl semimetal Wan, Turner, Vishwanath, and Savrasov, PRB 2011

Chern numbers and Fermi arcs unpublished

Our Roadmap for 3D New Topological Materials 2 nd Gen, Bi 2 Se 3 /Bi 2 Te 3 : single Dirac cone, large bulk gap, but naturally doped with electrons or holes Nat. Phys. 5, 398 (2009); PRL 103, 146401 (2009); Nature 460, 1101 (2009). Half-Heuslers, Li 2 AgSb, quaternary chalcogenides, famatinites, ternary GeBi 2 Te 4, Bi 2 Te 2 Se families: tunability of lattice/dopants Nat. Mat. 9, 546 (2010); PRB 82, 125208 (2010); arxiv:1007.5111; New J. Phys. 13, 085017 (2011); New J. Phys. 13, 095005 (2011); PRB 85, 235406 (2012); PRB 87, 121202R (2013). TlBiSe 2 family: isolated single Dirac cone, topological phase transition PRL 105, 036404 (2010); Science 332, 560 (2011); PRB 86, 115208 (2012); Nat. Commun. 6, 6870 (2015); PRB (2016) (Pb/Sn)Te family: first topological crystalline insulator, topological phase transition. Nat. Commun. 3, 982 (2012); Nat. Commun. 3, 1192 (2012); PRB 87, 235317 (2013); Science 341, 1496 (2013); Nat. Phys. 10, 572 (2014); PRB 92, 075131 (2015); Nat. Commun. 6, 6559 (2015); Nat. Mat. 14, 318 (2015);

Our Roadmap for 3D New Topological Materials TaAs family: first Weyl semimetal. Nat. Commun. (2015) ; Science (2015); Nat. Phys. (2015); Science Advances (2015); PRB (2015); ACS nano (2016); Nat. Commun. (2016); PRL (2016); SrSi 2 Weyl semimetal: Double Weyl, no mirrors PNAS (2016) (Mo,W)Te 2 : Type II Weyl semimetal Nat. Commun. (2016), Nature Communications 7, 13643 (2016), Phys. Rev. Lett. 117, 266804 (2016), Phys. Rev. B 94, 085127 (2016) PbTaSe 2, TlTaSe 2 : Topological nodal-line semimetals: Nat. Commun. (2016) ; PRB 93, 121113 (2016); PRB 93, 245130 (2016) ; Ta 3 S 2 Weyl semimetal: large separation between Weyl nodes. Science Advances (2016) Co 2 TiSi Heuslers: magnetic Weyl/nodal-line semimetal with high Curie temperature. Scientific Reports (2016)

Our Roadmap for 3D New Topological Materials LaAlGe, CeAlGe: magnetic Type II Weyl semimetal Science Advances (2016), PRB (2018) VAl3 family: Type-II Topological Dirac Semimetals PRL (2017) WC, ZrTe: New Fermion, triply-degenerate Scientific Reports (2017) Kramers theorem-enforced Weyl fermions: Ag3BO3, TlTe2O6, Ag2Se arxiv:1611.07925 ZrPtGe: Saddle-like topological surface states PRB 97, 075125 (2017) RhSi: New Fermion, 6-fold- and 4-fold-degenerate chiral fermions PRL 119, 2016401 (2017) Co 2 MnGa: Hopf and chain link PRL 119, 156401 (2017)

Our Roadmap for 3D New Topological Materials LiOsOo 3 : Cubic Dirac cone PRM 2, 051201R (2018) TlMo 3 Se 3 : a candidate for topological superconductor PRB 97, 014510 (2018) Ca2As: Rotation anomaly topological crystalline insulator arxiv:1805.05215

Pseudo PbTe: TlBiTe 2 1Γ 3X 4L PbTe - - + SnTe - - - Both are Z 2 trivial. Te Tl (Pb) k z + [111] Te z x y Bi (Pb) k x + Γ L X k y H. Lin et al., Physical Review Letters 105, 036404 (2010).

S.-Y. Su et al., Science 332, 560 (2011)

S.-Y. Su et al., Science 332, 560 (2011)

S.-Y. Su et al., Science 332, 560 (2011)

Energy Topological phase transition S.-Y. Su et al., Science 332, 560 (2011)

Weyl semimetal without Breaking Time-reversal Symmetry TaAs class: (Ta,Nb)(As,P) Stoichiometric compound I4 1 md (C 4v ) No inversion symmetry C 4 rotation axis 2 mirror planes, xz & yz Huang et al., Nat. Comm., 6, 7373 (2015) S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nature Commun. 6, 7373 (2015)

band structure of TaAs S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nature Commun. 6, 7373 (2015) No SOC SOC included

Xu, Belopolski, Alidoust, Neupane, Bian, Zhang, Sankar, Chang, Yuan, Lee, Huang, Zheng, Ma, Sanchez, Wang, Bansil, Chou, Shibayev, Lin, Jia, Hasan, Science 349, 613 (2015). Weyl points and topological chiral charge in TaAs: (a) Position of WPS and nodal ringin TaAs. (e) A schematic for projected WPS on (001) surface. (f) spin texture

Surface States of TaAs Xu, Belopolski, Alidoust, Neupane, Bian, Zhang, Sankar, Chang, Yuan, Lee, Huang, Zheng, Ma, Sanchez, Wang, Bansil, Chou, Shibayev, Lin, Jia, Hasan, Science 349, 613 (2015).

LaAlGe Xu, Alidoust, Chang, Lu, Singh, Belopolski, Sanchez, Zhang, Bian, Zheng, Husanu, Bian, Huang, Hsu, Chang, Jeng, Bansil, Strocov, Lin, Jia and Hasan, arxiv:1603.07318

LaAlGe Xu, Alidoust, Chang, Lu, Singh, Belopolski, Sanchez, Zhang, Bian, Zheng, Husanu, Bian, Huang, Hsu, Chang, Jeng, Bansil, Strocov, Lin, Jia and Hasan, arxiv:1603.07318

RhSi SG#198 4-fold 2-fold Γ Guoqing Chang, Su-Yang Xu, Benjamin J. Wieder, Daniel S. Sanchez, Shin-Ming Huang, Ilya Belopolski, Tay-Rong Chang, Songtian Zhang, Arun Bansil, Hsin Lin, and M. Zahid Hasan, PRL (2017). R 6-fold 2-fold

RhSi Guoqing Chang, Su-Yang Xu, Benjamin J. Wieder, Daniel S. Sanchez, Shin-Ming Huang, Ilya Belopolski, Tay-Rong Chang, Songtian Zhang, Arun Bansil, Hsin Lin, and M. Zahid Hasan, PRL (2017).

Summary We have identified many materials families of various topological phases. Metals with nontrivial band topology could be more interesting. Bulk states: Weyl, Dirac, nodal-line, new fermions. Surface states: Fermi arcs, drumhead surface states. RhSi exhibit 6-fold- and 4-fold-degenerate chiral fermions in the bulk and large Fermi arcs on the surface

Surface/edge states 2D quantum spin Hall 3D topological insulator

New 2D material with graphene-like structure Without SO z K x c With SO Compare with graphene: sp 2 sp 3 C.C. Liu et al., PRB 84 (2011) & PRL 107 (2011) K 40

Quantum spin Hall (2D Topological insulator) Fu and Kane s parity analysis:prb 76, 045302 (2007) Parity of each valence band Sign of parity product Gap (mev) Z 2 = 1 Z 2 = 1 8 23 M M K Γ M Z 2 = 1 72 Z 2 = 0 554 The 2D systems of Si, Ge, and Sn are 2D QSH materials, whereas Pb is not C.C. Liu et al., PRB 84 (2011) & PRL 107 (2011)

Under E Field: Inversion Symmetry Breaking Gap evolution z A B x Drummond et al., PRB 85, 12 The gap size reduces linearly as we turn on the electric field: At E z = E c, the gap reduces to zero As E z > E c, the system reopens a gap

E-field tunable topological phase transition E z = 0 0 < E z < E c E z = E c E z > E c AB AB QSH phase QSH phase Critical phase BB AA Band insulator silicene Bi 2 Se 3

A low-energy effective description 1 st term = Hopping term 2 nd term = Intrinsic NNN SOC 3 rd term = Rashba NNN SOC 4 th term = Staggered sublattice potential 5 th term = Zeeman splitting 4 th term turns out driving the transition between QSH and trivial BI C.-C. Liu, H. Jiang and Y. Yao, PRB 84, 195430 (2011). W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Nature Communications 4:1500 (2013).

Quantum spin Hall: spin separator Spin polarized conducting edge states Silicene Spin Separator

Gapless edge states G. Gupta, H. Lin, A. Bansil, M. B. A. Jalil, C.-Y. Huang, W.-F. Tsai, and G.C. Liang, Applied Physics Letters 104,032410 (2014).

High efficiency spin separator G. Gupta, H. Lin, A. Bansil, M. B. A. Jalil, C.-Y. Huang, W.-F. Tsai, and G.C. Liang, Applied Physics Letters 104,032410 (2014).

Field-tunable spin separator G. Gupta, H. Lin, A. Bansil, M. B. A. Jalil, C.-Y. Huang, W.-F. Tsai, and G.C. Liang, Applied Physics Letters 104,032410 (2014).

Field-tunable High Efficiency Spin Filter Basic idea (from bulk property): E z > 0 K K K

Field-tunable High Efficiency Spin Filter Basic idea (from bulk property): E z > 0 h K μ 0 K K

Quantum Point Contact E F μ 0 K K K K *In Rycerz et al., Nat. Phys. 3 (2007), edge state property is used in graphene!

Conductance (e 2 /h) High-efficiency spin filter Iterative Green s function method for two-terminal conductance [T. Ando, PRB 44 (1991)] Spin polarization L s =0 L s =8 μ 0 /t W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Nature Communications 4:1500 (2013).

Robustness against weak (nonmagnetic) disorder Disorder-averaged spin polarization as a function of the maximum strength of the random onsite potential V w. Disorder-averaged spin polarization as a function of the perrcentage of edge vacancies r in the constriction. W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Nature Communications 4:1500 (2013).

Summary At low energies, silicene can be described by two nearly fully spin-polarized (massless/massive) Dirac cones in the presence of the perpendicular E field Quantum spin Hall insulators can be used as a spin separator. It is possible to localize conducting channels anywhere in the 2D silicene by applying an inhomogeneous electric field. The proposed spin filter gives rise to nearly 100% spinpolarized currents via gate control More functional electronic devices based on 2D spin-orbit thin films can be anticipated in the future!

Thank you for your attention!

Energy Crystal symmetry protected Dirac node Metallic surface/edge states Z 2 TI TCI -i +i EF Γ X Γ Momentum X Mirror eigenvalues ±i

Topological crystalline insulator (Pb,Sn)Te 1Γ 3X 4L PbTe - - + SnTe - - - T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature Communications 3, 982 (2012).

Intrinsic band inversion in SnTe T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature Communications 3, 982 (2012).

Surface states and four Dirac cones Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z. Hasan, and A. Bansil, PRB 87, 235317 (2013). T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature Communications 3, 982 (2012).

Experimental observation Xu, Liu, Alidoust, Qian, Neupane, Denlinger, Wang, Wray, Cava, Lin, Marcinkova, Morosan, Bansil, Hasan, Nature Communications 3, 1192 (2012).

Two coaxial Dirac-cone model Te Sn Sn Sn Te Te Chen Fang, Matthew J. Gilbert, Su-Yang Xu, B. Andrei Bernevig, M. Z. Hasan, PRB 88, 125141 (2013). Junwei Liu, Wenhui Duan, and Liang Fu, Phys. Rev. B 88, 241303(R) (2013). Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z. Hasan, and A. Bansil, PRB 87, 235317 (2013).

Spin texture Te Sn

Observed spin texture Xu, Liu, Alidoust, Qian, Neupane, Denlinger, Wang, Wray, Cava, Lin, Marcinkova, Morosan, Bansil, Hasan, Nature Communications 3, 1192 (2012).

Topological Crystalline Insulators Including Crystalline Symmetry (Spinless) Spinless Topological Crystalline Insulator Including Crystalline Symmetry (Spinfull) Mirror-protected Topological Crystalline Insulator SnTe Fu, L. Phys. Rev. Lett., 2011, 106, 106802 Hsieh, T. H.; Lin, H.; Liu, J.; Duan, W.; Bansi, A. & Fu, L. Nat. Commun., 3, 982 (2012)

Rotation Anomaly Topological Crystalline Insulators Including Crystalline Symmetry (Spinfull) Opposite Helicity The interaction changes sign after the C2z operation arxiv:1709.01929

Band Structures 6 arxiv:1805.05215

Topological phases Number of Band Inversions Topological Invariants 6 arxiv:1805.05215

arxiv:1805.05215 6 Nontrivial Surface States

6 Breaking Nontrivial Mirror Planes arxiv:1805.05215

arxiv:1805.05215 Topological Phase Transition Between Two TCIs Ca 2 Sb Sr 2 Sb

Topological Phase Transition Between Two TCIs Ca 2 Sb Sr 2 Sb

Summary SnTe Surface states exhibit gapless Dirac cones with Dirac nodes protected by mirror symmetry. -- Spin texture can be understood by a two-coaxial-dirac-cone model. New topological crystalline insulators are predicted in Ca2As crystal family. More topological materials can be anticipated in the future!

Thank you for your attention!