TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

Similar documents
ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics

ON THE WEIGHTED OSTROWSKI INEQUALITY

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

Journal of Inequalities in Pure and Applied Mathematics

S. S. Dragomir. 2, we have the inequality. b a

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

Journal of Inequalities in Pure and Applied Mathematics

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Journal of Inequalities in Pure and Applied Mathematics

An optimal 3-point quadrature formula of closed type and error bounds

WENJUN LIU AND QUÔ C ANH NGÔ

Improvement of Ostrowski Integral Type Inequalities with Application

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

Bulletin of the. Iranian Mathematical Society

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

arxiv: v1 [math.ca] 28 Jan 2013

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

New general integral inequalities for quasiconvex functions

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

Math& 152 Section Integration by Parts

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

The Hadamard s inequality for quasi-convex functions via fractional integrals

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

A Note on Feng Qi Type Integral Inequalities

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

New Expansion and Infinite Series

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Math 554 Integration

Euler-Maclaurin Summation Formula 1

An inequality related to η-convex functions (II)

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

Journal of Inequalities in Pure and Applied Mathematics

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

The Riemann Integral

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

Math 1B, lecture 4: Error bounds for numerical methods

1. On some properties of definite integrals. We prove

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

GENERALIZED ABSTRACTED MEAN VALUES

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

ODE: Existence and Uniqueness of a Solution

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

Improvement of Grüss and Ostrowski Type Inequalities

Review of Calculus, cont d

Hermite-Hadamard type inequalities for harmonically convex functions

QUADRATURE is an old-fashioned word that refers to

Integral inequalities for n times differentiable mappings

Set Integral Equations in Metric Spaces

The Regulated and Riemann Integrals

Lecture notes. Fundamental inequalities: techniques and applications

Definite integral. Mathematics FRDIS MENDELU

OPIAL S INEQUALITY AND OSCILLATION OF 2ND ORDER EQUATIONS. 1. Introduction We consider the second-order linear differential equation.

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

On Error Sum Functions Formed by Convergents of Real Numbers

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Math 131. Numerical Integration Larson Section 4.6

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

Lecture 1. Functional series. Pointwise and uniform convergence.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Approximation of functions belonging to the class L p (ω) β by linear operators

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

ON BERNOULLI BOUNDARY VALUE PROBLEM

Hadamard-Type Inequalities for s Convex Functions I

Transcription:

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS S.S. DRAGOMIR AND A. SOFO Abstrct. In this pper by utilising result given by Fink we obtin some new results relting to the trpezoidl inequlity nd some of its generlistions for n time differentible functions.. Introduction The following result is known in the literture s Ostrowski s inequlity 3 p. 468. Theorem. Let f : b R be differentible mpping on b) with the property tht f t) M for ll t b). Then f x) b ) f t) dt b x +b 4 + b ) b ) M. The Ostrowski inequlity hs been generlised in number of different wys see 3 nd. Fink lso obtined the following result for n time differentible functions. Theorem. Let f ) t) be bsolutely continuous on b with f n) t) L p b) nd let.) F k x) : n k f k ) ) x ) k f k ) b) x b) k k! b then.) f x) + F k x) n x ) nq+ +b x) nq+ q b k... n ; n!b ) B q q + n ) q + ) f n) p for f L p b ; p > p + q ; ) n n n! mxx )n b x) n } b f n) ; for f L b ; x ) n+ +b x) n+ nn+)!b ) f n) ; for f L b ; Dte: My 03 005. 000 Mthemtics Subject Clssifiction. Primry 6D5; Secondry 6D0. Key words nd phrses. Trpezoidl inequlity Ostrowski s inequlity Integrl Inequlities.

S.S. DRAGOMIR AND A. SOFO where B α β) is Euler s Bet function.3) f n) p : f n) t) p dt ) p f n) : ess sup f n) t) <. p nd Remrk. The result bove on the infinite norm ws given by Milovnović nd Pečrić in 976 see 3 p. 468). Note tht for n nd the infinite norm Theorem reduces to Theorem. In the next section we develop n integrl equlity tht will permit us to obtin bounds for the error estimte in generlised trpezoid formul. The new results complement some of the erlier inequlities relted to the trpezoidl rule reported in. The Results The following generlistion of the trpezoid formul holds: Theorem 3. Let f : b R be mpping such tht its n ) th derivtive f ) is bsolutely continuous on b. Then we hve the equlity.) f ) + f b) n n! b ) n k) b ) k + k! } f k ) ) + ) k f k ) b) b t ) b t) b t) n + ) n t ) n f n) t) dt. Proof. We my use Fink s identity which sttes.) f x) + F k x) n b where t K t x) : t b n! b ) nd F k x) is defined by.). If in.) we put x then we obtin.3) f ) + F k ) n b if t x b if x t b )n n! b ) x t) K t x) f n) t) dt t ) b t) f n) t) dt

TRAPEZOIDAL TYPE INEQUALITIES 3 where F k ) )k n k) f k ) b) b ) k. k! Similrly if in.) we put x b we get.4) where f b) + F k b) n b n! b ) F k b) n k) f k ) ) b ) k. k! Adding.3) to.4) nd dividing by we hve f ) + f b) + F k ) + F k b)} n n! b ) t ) b t) b t) t ) f n) t) dt b b t) n + ) n t ) n f n) t) dt replcing F k ) nd F k b) we obtin identity.) hence the theorem is proved. Remrk..5) f ) + f b) ) For n we recpture the known identity b b t + b ) f t) dt. b) For n we deduce the equlity below which is lso well known in the literture.6) f ) + f b) b b ) b ) b b ) t t ) b t) f t) )) + b f t) dt. c) For n 3 we hve some extr terms involving the first derivtive t the end points nmely:.7) f ) + f b) + b f ) f b) b 6 b ) + b t ) b t) ) t f t) dt.

4 S.S. DRAGOMIR AND A. SOFO.8) d) Finlly for n 4 we hve the following f ) + f b) + b f ) f b) 8 b ) + f ) + f b) 48 b b t ) b t) b t) + t ) f 4) t) dt 48 b ) b t ) b t) t + b ) ) b + f 4) t) dt. 4 b ) The following inequlities cn now be stted. Theorem 4. Let f : b R be mpping such tht f ) is bsolutely continuous on b. Define T b n) } : f ) + f b) n k) b ) k f k ) ) + ) k f k ) b) + n k! then b.9) T b n) b ) + q n! B q q + n ) q + ) f n) p for p + q ; p > q > ; b ) n n )! + ) n n!) f n) n+)!n! for p q ; b ) n nn+)! f n) where B x y) is the Bet function nd f n) p f n) re s defined in.3). Proof. From.) nd the definition of T b n) we hve b.0) T b n) Y t) f n) t) dt n! b ) where.) Y t) : t ) b t) + ) n t ) b t). By Hölder s inequlity.) T b n) ) b q Y t) q dt n! b ) f n) t) p dt ) p p + q > p >. q

TRAPEZOIDAL TYPE INEQUALITIES 5 Now let us provide some upper bounds for the integrl: Y t) q dt. For rel α nd β nd q > we hve the elementry inequlity.3) α + β q q α q + β q ). Utilising.3) we obtin Y t) q dt q by the substitution w t b Also t ) q b t) )q + t ) )q b t) q dt q b ) nq+ B q + n ) q + ) B α β) B β α) Y t) q dt so from.) we deduce ) q nd the symmetry of the Bet function T b x) b )+ q n! 0 t α t) β dt; α β > 0. b ) n+ q B q q + n ) q + ) B q f q + n ) q + ) n) nd the first prt of the theorem is proved. For the Eucliden norm p q ) we cn compute exctly Y t) dt t ) b t) + ) n t ) b t) dt t ) b t) n + ) n t ) n b t) n + t ) n b t) ) dt b ) n+ B 3 n ) + ) n B n + n + ) b )n+ n )! + ) n n!). n + )! From.) T b n) b )n n )! + ) n n!) f n) n + )!n! nd the second prt of the theorem is proved. For the third prt of the theorem observe tht Y t) dt t ) b t) + ) n t ) b t) dt t ) b t) dt + b )n+ n n + ). p t ) b t) dt

6 S.S. DRAGOMIR AND A. SOFO From.) T b n) b )n f n) n n + )! the third prt of the theorem is proved hence Theorem 4 is proved. For the norm we cn lso delinete the following theorem. Theorem 5. Let f : b R be mpping such tht f ) is bsolutely continuous on b. i) For n even let n k k then } mx t )b t ) k +t ) k b t ) f k) t k)!b ) for k > ; T b k) b 8 f for k ; f 4) for k ; b ) 3 384 where t +b is solution of the polynomil eqution b t) k t ) k + k ) t ) k b t) t ) b t) k 0. ii) For n odd let n k + k 0 mx τ T b k + ) τ )b τ) k τ ) k b τ) k+)!b ) f for k 0 n } f k) for k where τ +b is solution of the polynomil eqution t ) k + b t) k k t ) b t) k + t ) k b t) 0. The following two lemms will be useful in the proof of Theorem 5. Lemm. Let b > k is n integer nd t b. Define M t k) : t ) b t) k + t ) k b t) then M t k) hs exctly two zeros s function of t on b. Proof. Observe tht M t k) t ) t b) t ) k + t b) k. Since for t b) t ) k + t b) k > 0 hence M t k) 0 hs the only rel solutions t nd t b. Lemm. Let b > k is n integer nd t b. Define P t k) t ) b t) k + t ) k b t) then P t k) hs exctly three zeros in b.

TRAPEZOIDAL TYPE INEQUALITIES 7 Proof. We hve Observe tht Since nd P t k) t ) t b) t b) k + t b) k. P k) P b k) 0. t ) k + t b) k t + b) t ) k + + b t) k t ) k + t ) k 3 b t) + t ) b t) k 3 + b t) k > 0 for t b hence the third solution of P t k) 0 for t b is t +b. Proof of Theorem 5. i) Consider the cse of n even let n k k nd denote Y : sup t ) b t) k + t ) k b t). t b For M t k) defined bove simple clcultions show tht M t k) b t) k t ) k + k ) t ) k b t) t ) b t) k M t k) k ) t ) k + b t) k + k ) k ) t ) b t) k 3 + t ) k 3 b t) nd ) ) k + b b M k) M b k) 0; M k > 0 ) M k) b ) k > 0; M b k) b ) k + b < 0 M k 0 ) ) k + b b M k k ) k ) > 0 for k >. The locl extrem for the function M k) re the rel numbers t +b tht re solutions of the polynomil eqution b t) k t ) k + k ) t ) k b t) t ) b t) k 0. Therefore by Lemm } t Y mx t ) b t ) k + t ) k b t ) hence T b k) mx t for k >. t ) b t ) k + t ) k b t ) k)! b ) > 0 } f k)

8 S.S. DRAGOMIR AND A. SOFO For the two specil cses k n ) we hve T b ) b 8 f ) nd for k n 4) b )3 T b 4) f 4). 384 ii) When n is odd let n k + k 0 nd denote Z : sup t ) b t) k t ) k b t). t b With P t k) defined bove in Lemm we hve P t k) t ) k + b t) k k t ) b t) k + t ) k b t) ) + b P k) P b k) P k 0 P k) P b k) b ) k > 0 ) ) k + b b P k k) < 0 for k so there exists t lest one point τ ) +b such tht P τ k) : τ ) b τ) k τ ) k b τ) > 0. One cn relise tht the locl extrem for P k) re the rel numbers τ +b tht re solutions of the polynomil eqution t ) k + b t) k k t ) b t) k + t ) k b t) 0. Now by Lemm hence Z mx τ T b k) mx τ For the trivil cse k 0 n ) we hve } τ ) b τ) k τ ) k b τ) > 0 hence Theorem 5 is proved. τ ) b τ) k τ ) k b τ) k + )! b ) T b ) f 3. Some Exmples } f k+). In this section we give some exmples tht highlight Theorems 4 nd 5. i) For n 4 let T b 4) : f ) + f b) + b 8 + f ) f b) b ) 48 f ) + f b) b

TRAPEZOIDAL TYPE INEQUALITIES 9 then T b 4) b ) 3+ q 4 B q q + 3q + ) f 4) p for f L p b p q > b ) 7 44 0 b ) 4 480 b ) 3 384 p + q ; f 4) for f L b ; f 4) for f L b ; f 4) for f L b. ii) For n 5 let T b 5) : then T b 5) f ) + f b) + b ) f ) + f b)) 30 + 3 b ) f ) f b)) 0 + b )3 f ) f b)) 40 b b ) 4+ q 0 B q q + 4q + ) f 5) p for f L p b p q > b ) 9 70 b ) 5 3600 3 ) 770 p + q ; f 5) for f L b ; f 5) for f L b ; 9 6) 0 6 5b ) 4 60000 For n 5 k solving τ ) 4 + τ b) 4 + 4 we obtin for which τ + b f 5) for f L b ; τ ) τ b) 3 + τ ) 3 τ b) 0 6 5 b ) τ 0 P τ ) 9 6 ) 0 6 5 b ) 5 50 + b is the required mximum in Theorem 5 ii). Therefore T b 5) 9 6 ) 0 6 5 b ) 4 60000 f 5). 0

0 S.S. DRAGOMIR AND A. SOFO iii) For n 6 let f ) + f b) b ) T b 6) : + f ) f b)) 6 b ) + f ) + f b )3 b)) + f ) f b)) 4 44 b ) )4 + f 4) ) + f 4) b) 440 b then T b 6) b ) 5+ q 70 B q q + 5q + ) f 6) p for f L p b p q > b ) 440 b ) 6 3040 For n 6 k 3 stisfies 5 ) 00 p + q ; f 6) for f L b ; f 6) for f L b ; 5 0 4)b ) 5 38880 t + b b t ) 5 t ) 5 + 5 f 6) for f L b. 6 0 5 b ) 6 + b t ) 4 b t ) t ) b t ) 4 0 nd ) 6 5 0 4 b ) M t 3) 7 which provides the required mximum in Theorem 5 i). Therefore ) 5 5 0 4 b ) T b 6) f 6). 38880 References S.S. DRAGOMIR nd Th.M RASSIAS Ostrowski Type Inequlities nd Their Applictions in Numericl Integrtion Acdemic Publishers Dordrecht 00. A.M. FINK Bounds on the devition of function from its verges Czechoslovk Mth. J. 4 7) 99) 89-30. 3 D.S. MITRINOVIĆ J.E. PEČARIĆ nd A.M. FINK Inequlities for Functions nd their Integrls nd Derivtives Kluwer Acdemic Publishers Dordrecht 99. School of Computer Science nd Mthemtics Victori University of Technology PO Box 448 Melbourne City Victori 800 Austrli. E-mil ddress: sever.drgomir@vu.edu.u URL: http://rgmi.vu.edu.u/drgomir E-mil ddress: nthony.sofo@vu.edu.u URL: http://rgmi.vu.edu.u/sofo