Probing the Chemistry of Luminous IR Galaxies

Similar documents
Compact Obscured Nuclei in the ALMA era

NEARBY GALAXIES AND ALMA

The Unbearable Lightness of Chemistry

Galaxies of Many Colours: Star Formation Across Cosmic Time. z=0, t= /-0.037x10 9 years (Now)

Dense gas really matters.

Luminous Infrared Galaxies

University of Groningen. Chemical fingerprints of star forming regions and active galaxies Pérez-Beaupuits, Juan-Pablo

The Excited and Exciting ISM in Galaxies: PDRs, XDRs and Shocks as Probes and Triggers

Understanding Submillimetre Galaxies: Lessons from Low Redshifts

Multi-Phase Outflows in ULIRGs

The Interstellar Medium

MALATANG THOMAS R. GREVE UNIVERSITY COLLEGE LONDON. MApping the dense molecular gas in The strongest star-forming Galaxies

IRS Spectroscopy of z~2 Galaxies

Molecular properties of (U)LIRGs: CO, HCN, HNC and HCO +

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

HerCULES. Paul van der Werf. Leiden Observatory. Lorentz Centre February 28, 2012

arxiv: v3 [astro-ph.ga] 20 Mar 2018

Warm Molecular Hydrogen at high redshift with JWST

Dusty star-forming galaxies at high redshift (part 5)

Chris Pearson: RAL Space. Chris Pearson: April

Feeding and Feedback in U/LIRGs: ALMA Case Studies

arxiv: v2 [astro-ph] 20 Aug 2008

Fingerprinting (ultra)luminous infrared galaxies

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

Ultra Luminous Infared Galaxies. Yanling Wu Feb 22 nd,2005

High density tracers of molecular gas in earlytype

arxiv: v1 [astro-ph] 4 Nov 2008

Studying Galaxy Evolution with FIRI. A Far-InfraRed Interferometer for ESA. Dimitra Rigopoulou Oxford/RAL-STFC

Dense Molecular Medium in Active Galaxies

VLBI observations of OH megamaser galaxies (A research plan introduction)

arxiv: v1 [astro-ph.ga] 30 Nov 2015

Dust. The four letter word in astrophysics. Interstellar Emission

GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

wsma for Nearby Galaxies

Fingerprinting (ultra)luminous infrared galaxies

MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER

Beyond the Visible -- Exploring the Infrared Universe

Towards a Complete Census of Extreme Starbursts in the Early Universe

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

PoS(10th EVN Symposium)016

The Physics of the Interstellar Medium

A Radio Jet Drives a Molecular & Atomic Gas Outflow in Multiple Regions within 1 kpc 2 of the Nucleus of IC5063

Astrophysical Quantities

Chalmers Publication Library

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

AGN winds and outflows

Outflows in local ULIRGS: [CII] 158 Broad Components and OH outflows

Krista Lynne Smith M. Koss R.M. Mushotzky

Massive molecular outflows from ULIRGs - Dynamics and Energetics - E. Sturm for the SHINING and QUEST Team

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

The HDO/H2O and D2O/HDO ratios in solar-type protostars

Astrochemistry the summary

High Redshift Universe

arxiv: v1 [astro-ph.co] 5 Oct 2010

Maria Cunningham, UNSW. CO, CS or other molecules?

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

A search for gravitationally lensed water masers

What's in the brew? A study of the molecular environment of methanol masers and UCHII regions

arxiv: v1 [astro-ph.ga] 10 Dec 2015

Probing the embedded phase of star formation with JWST spectroscopy

A TALE OF TWO MONSTERS: EMBEDDED AGN IN NGC6418 AND IRAS

CO 近赤外線吸収から探る銀河中心 pc スケールでのガスの物理状態 : あかりと Spitzer による低分散分光観測

Discovery of Terahertz Water Masers with SOFIA/GREAT

Interstellar Dust and Extinction

SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions

Dusty AGN torii. Ionization cones: toroidal obscuration

Lecture 18 - Photon Dominated Regions

Chapter 10 The Interstellar Medium

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Feeding (and feedback) in nearby AGN and radio MOHEGs

Multi-wavelength ISM diagnostics in high redshift galaxies

A prelude to SKA. High-resolution mapping of the ujy radio population. Ian Smail ICC, Durham University Tom Muxlow, JBCA, University of Manchester

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects

Empirical Evidence for AGN Feedback

Wagg ea. [CII] in ALMA SV 20min, 16 ants. 334GHz. SMA 20hrs

Dominik A. Riechers Cornell University

arxiv: v1 [astro-ph] 30 Sep 2007

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

Chapter 17. Active Galaxies and Supermassive Black Holes

The influence of cosmic rays on the chemistry in Sagittarius B2(N)

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

arxiv:astro-ph/ v1 14 Jan 2002

Active Galaxies & Quasars

Insights from the Galactic center

Astrophysics of Gaseous Nebulae

Molecular line survey observations toward nearby galaxies with IRAM 30 m

arxiv:astro-ph/ v3 7 Mar 2004

CHAPTER 5. W49A DISCUSSION

Extragalactic SMA. Sergio Martín Ruiz. European Southern Observatory

CS (5 4) survey towards nearby infrared bright galaxies

Active Galaxies & Emission Line Diagnostics

Diffuse Interstellar Medium

Astronomy. Astrophysics. Multimolecule ALMA observations toward the Seyfert 1 galaxy NGC 1097

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia

THE REDSHIFT SEARCH RECEIVER 3 MM WAVELENGTH SPECTRA OF 10 GALAXIES

arxiv:astro-ph/ v1 12 Jul 2004

Transcription:

Probing the Chemistry of Luminous IR Galaxies, Susanne Aalto Onsala Space Observatory, Sweden

Talk Outline Luminous IR galaxies Chemistry as a tool Observations in NGC 4418 Conclusions

Luminous IR Galaxies Most of the energy radiated in the IR, L IR > 10 10 L Heavily obscured by dust Deep silicate Mid-IR absorption Most luminous sources (ULIRGS) often mergers or interacting systems Dense (n 10 5 cm 3 ), warm (T > 100 K) molecular gas in nuclear regions a) Arp 244, b) NGC7252, c) I19254 d) Arp 220 (Sanders & Mirabel, 1996)

Central Power Source: Starburst or AGN? Seyfert-like optical and NIR spectra Accretion on AGN No Hard X-Ray emission Starburst or deeply buried AGN FIR/Radio correlation, slightly higher q Nascent starburst Energy source obscured by dust Radio observations required Free-free thick! Radio continuum doesn t help M82 Cen-A

Possible Scenarios PDR XDR Hot Cores 00000 11111 000 111 00 11 00 11 0000 1111 000000 111111 0000000 1111111 0000000 1111111 00000 11111 00 11 00 11 000 111 000 111 000 111 0000 1111 0000 1111 0000 1111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 0 1 000000 111111 00000 11111 000000 111111 000000 111111 0000000 1111111 00000 11111 0000 1111 00000 11111 0000 1111 0000 1111 0 1 000 111 00 11 0 1 000000 111111 000 111 0 1 00000 11111 00 11 000 111 00 11 0000 1111 0000000 1111111 00 11 000 111 0000 1111 0000 1111 000000 000000 111111 111111 AGN 000000 111111 00000 11111 000000 111111 00000 11111 0000 1111 000 111 00000 11111 0000000 1111111 000 111 00000 11111 0000000 1111111 00000 11111 0000000 1111111 0 1 00 11 0 1 00 11 00 11 00 11 00 11 00 11 00 11 000 111 00 11 0 1 000 111 0 1 0 1 0 1 000000 111111 00000 11111 000000 111111 0000000 1111111 0 1 00 11 00 11 00 11 00 11 000 111 0 1 0 1 000000 111111 FUV dominated Layered: C + C CO X-Ray dominated Not Layered High Ionization Warm, dense, shielded gas Large molecules EACH LEADING TO A DIFFERENT CHEMISTRY!!

Chemical Modeling TRANSITION COEFFICIENTS DENSITY RADIATION FIELD ABUNDANCES INTENSITIES CHEMICAL REACTIONS NETWORK DYNAMICS GEOMETRY

Chemical Modeling TRANSITION COEFFICIENTS DENSITY RADIATION FIELD ABUNDANCES INTENSITIES CHEMICAL REACTIONS NETWORK DYNAMICS GEOMETRY

The LIRG NGC4418: a Molecular Puzzle Edge-on, Sa-type LIRG L IR 10 11 L Deep mid-ir silicate absrobtion Warm dust ( 80 k) Rich molecular chemistry! Optical (HST)

Observations in NGC 4418: 2007-2008

Observations in NGC 4418: 2007-2008 Observations between Dec 2007 and Aug 2008 at APEX, IRAM30m and JCMT Detected 41 transitions of 11 molecules Bright HNC and HC3N emission HC3N vibrationally excited!

What is causing bright HNC emission? Abundance Radiative Excitation Ion-neutral chemistry governs HNC/HCN ratio: X[HNC]=X[HCN] in PDRs X[HNC]>X[HCN] in dense XDRs (n>10 5 cm 3 ) (Meijerink et al, 2007) Mid-IR pumping of bending mode at 21.5µm. Effective at T B =50 K

Bright HC 3 N In gas phase from evaporation of ices on dust grains Quickly destroyed by UV (PDR) and reactions with C + (XDR) Requires dense, warm, shielded gas Hot core molecule: young star formation or dusty, deeply buried AGN??

LTE Analysis: Rotational Diagram Log(Nu/gu) 50 48 46 44 42 40 38 36 Rotational diagram for NGC4418 HCN Tx=10.364[K] N=6.5899e+14[cm - 2] HNC Tx=12.402[K] N=5.2907e+14[cm - 2] CO Tx=9.4714[K] N=1.0788e+18[cm - 2] HCO+ Tx=9.8992[K] N=2.9278e+14[cm - 2] HC3N Tx=63.893[K] N=6.0767e+14[cm - 2] CS Tx=18.591[K] N=1.0517e+15[cm - 2] 13CO Tx=6.5423[K] N=4.2367e+16[cm - 2] 34 0 50 100 150 200 Eu [K] HC3N vibrational Excitation Log(Nu/gu) 38 37 36 35 34 33 HC3N Tx=63.893[K] N=6.0767e+14[cm - 2] HC3N 25-24 Tx=499.19[K] N=6.9111e+14[cm - 2] HC3N v 6 Tx=71.912[K] N=1.6652e+18[cm - 2] HC3N v 7 Tx=61.077[K] N=3.3786e+16[cm - 2] 100 200 300 400 500 600 700 800 Eu [K]

LTE Results For most high-density tracers we have T 10 K HC3N has a higher rotational velocity T 60 K HC3N not fitted by a single component model Vibrational temperature of HC3N T vib 500 K Radiative excitation! What does T vib mean? X[HNC]/X[HCN] 1 PDR?

CO Radex Fit Freq. [GHz] HNC Radex Fit Freq. [GHz] HCN Radex Fit Freq. [GHz] NLTE Analysis: RADEX 2500 Observed Radex, Chi 2 = 149.76 600 Observed Radex, Chi 2 = 5.7353 2000 500 Flux [K km/s] 1500 Flux [K km/s] 400 1000 nh2=532+/-40.164cm -3 T=93+/-6.4874K N=2.4156e+18+/-1.7914e+17cm -2 300 nh2=300000+/-18023cm -3 T=230+/-22.483K N=6.868e+14+/-3.4883e+13cm -2 200 500 150 200 250 300 350 100 150 200 250 300 350 450 Observed Radex, Chi 2 = 0.28708 400 350 Flux [K km/s] 300 250 nh2=4.9879e+05+/-42037cm -3 T=230+/-33.272K N=5.0966e+14+/-3.3671e+13cm -2 200 150 100 150 200 250 300 350

RADEX Results CO seems to be coming from low density gas n(h 2 ) 500 cm 3 Cannot fit CO: Probably 2 Components! CO/ 13 CO larger for 1-0 transition coming from diffuse gas? HNC and HCN fitted by the same physical conditions at higher densities and temperatures (solution very unstable) Cannot fit CS and HCO + yet

Possible Scenario (Just a Sketch) CO 2 1,3 2 HC3N 00000 11111 0000000 1111111 00000 11111 0000000 1111111 0 1 00 11 0 1 00 11 00 11 00 11 00 11 00 11 00 11 000 111 00 11 0 1 000 111 0 1 0 1 0 1 000000 111111 00000 11111 000000 111111 0000000 1111111 0 1 00 11 00 11 00 11 00 11 000 111 0 1 0 1 000000 111111 HCN, HNC CO 1 0

Summary and Discussion Observed a very rich molecular chemistry in LIRGS and ULIRGS Not unambiguous interpretation of molecular intensities NGC 4418 probably a young Starburst (deeply buried AGN still possible) Power source for LIRGs is still unclear Necessity of more accurate chemical models (eg. including clumping, dynamics, source size, etc...)

What to do PUBLISH!!! Improve RADEX fitting Including source size and HC3N vibrations! Interferometric observations to get a spatially resolved chemistry (in progress) Understand and play with chemical modeling (near future) The Future: APEX THz receiver & Herschel satellite Higher molecular transitions ALMA Spatially resolved chemistry at GMC scale

Thank You!

Chemical Tracers: HCN/HCO + (I) Kohno et al (2005): HCN/HCO + line ratio>1 in Seyfert nuclei Gracia-Garpio (2006): Elevated HCN/HCO + in ULIRGs Is an elevated HCN/HCO + an AGN indicator?

Chemical Tracers: HCN/HCO + (II) Observed high HCN/HCO + in LIRGs and AGNs (Imanishi et al, 2007) Some AGN models show an increased HCN abundance (Lintott & Viti, 2006) Recent XDR models predict low [HCN]/[HCO + ] due to enhanced HCO + production (Meijerink et al, 2007) Imanishi (2007): AGNs (Squares), Starbursts (Circles), LIRGs (Stars)