Top mass effects in gluon fusion processes

Similar documents
gg! hh in the high energy limit

H + jet(s) (fixed order)

NLO for Higgs signals

New physics effects in Higgs cross sections

Precision Higgs physics. at hadron colliders

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich

THE STRONG COUPLING AND LHC CROSS SECTIONS

NLO QCD corrections to Higgs boson pair production via gluon fusion

ggf Theory Overview For Highest Precision

Status of Higgs plus one jet at NNLO

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum

A pnrqcd approach to t t near threshold

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

The Higgs pt distribution

Recent theoretical issues in Higgs production

SM Predictions for Gluon- Fusion Higgs Production

Associated Higgs Production with Bottom Quarks at Hadron Colliders

arxiv:hep-ph/ v1 25 Sep 2002

The rare decay H Zγ in perturbative QCD

m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV)

News from Top/QCD. André H. Hoang. Max-Planck-Institute Munich. ECFA Durham 2004 André Hoang p.1

VH production at the LHC: recent theory progress

Towards Jet Cross Sections at NNLO

NNLL threshold resummation for the total top-pair production cross section

Higgs Production at LHC

Fully exclusive NNLO QCD computations

NNLO Phenomenology Using Jettiness Subtraction

Constraining total width of Higgs boson at the LHC. Kajari Mazumdar Tata Institute of Fundamental Research Mumbai

Higgs boson signal and background in MCFM

Numerical evaluation of multi-scale integrals with SecDec 3

Cross sections for SM Higgs boson production

QCD threshold corrections for gluino pair production at NNLL

Constraints on Higgs-boson width using H*(125) VV events

W + W Production with Many Jets at the LHC

W/Z production with 2b at NLO

arxiv: v2 [hep-ph] 20 Jul 2014

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

Theoretical description of Higgs production and decay

The package TopoID and its applications to Higgs physics

Higher Order QCD Lecture 2

Status of Higgs and jet physics. Andrea Banfi

The LHC Higgs Cross Section Working Group: Results and Future Goals. Higgs Hunting Chiara Mariotti, INFN Torino

High order corrections in theory of heavy quarkonium

NNLO antenna subtraction with two hadronic initial states

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Bound-state effects in ttbar production at the LHC

Searching for Supersymmetric Higgs Bosons at the LHC

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Recent Results in NRQCD

Higgs Pair Production: NLO Matching Uncertainties

THEORY OUTLOOK AFTER THE CMS HIGGS WIDTH CONSTRAINT. Felix Yu Fermilab

High precision study for boosted Higgs at LHC

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD)

The study of the extended Higgs boson sector within 2HDM model

AN INTRODUCTION TO QCD

Squark and top quark pair production at the LHC and Tevatron

t th production at the LHC

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Understanding the Higgs Boson: Where We Are, Where We re Going, and How To Get There

Precision Calculations for Collider Physics

Implications of LHC Higgs results

Higher-order QCD corrections to the Higgs-boson qt distribution

Numerical Evaluation of Multi-loop Integrals

arxiv: v1 [hep-ph] 8 Nov 2018

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

Looking through the Higgs portal with exotic Higgs decays

The Standar Model of Particle Physics Lecture IV

update to 29/11/2012

Threshold Corrections To DY and Higgs at N 3 LO QCD

Higgs + Jet angular and p T distributions : MSSM versus SM

Higgs theory. Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep Friday, December 30, 11

The Higgs Boson Intrinsic Width

Higher order QCD corrections to the Drell-Yan process

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Top quark physics at lepton colliders. Input from theorists + further studies of e + e - 6 fermion composition. IFIC-LAL, feb 2013

Top Quarks, Unstable Particles... and NRQCD

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015

Exclusive Event Generation for the t t Threshold and the Transition to the Continuum

Top-quark mass determination

MadGolem: Automated NLO predictions for SUSY and beyond

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

THE SEARCH FOR THE HIGGS BOSON AT THE LHC

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment

Search for the Standard Model Higgs in WW (lν)(lν)

Heavy quark masses from Loop Calculations

Higgs Boson Measurements from ATLAS and CMS. Giacinto Piacquadio on behalf of the ATLAS and CMS Collaborations. ICHEP Seoul July 10th, 2018

Electroweak corrections with

Summary. Keith Ellis Fermilab

Geneva: Event Generation at NLO

ATLAS NOTE January 4, 2010

Summary of precision QCD issues at FCC-ee

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006

Interpreting Collider Data

Automation of NLO computations using the FKS subtraction method

NLO QCD+EW predictions for 2l2ν production

Transcription:

Top mass effects in gluon fusion processes Thomas Rauh AEC, University of Bern Ramona Gröber, Andreas Maier, TR arxiv:1709.07799 JHEP 1803 (2018) 020

Outline 2 Gluon fusion processes Validity of approximations Padé approximants Expansion around the top threshold Results Conclusions & outlook

Gluon fusion processes 3 Single Higgs production H Dominant Higgs production process σ(pp H+X) [pb] 2 10 M(H)= 125 GeV 10 1 1 10 pp H (N3LO QCD + NLO EW) pp qqh (NNLO QCD + NLO EW) pp WH (NNLO QCD + NLO EW) pp ZH (NNLO QCD + NLO EW) pp bbh (NNLO QCD in 5FS, NLO QCD in 4FS) pp tth (NLO QCD + NLO EW) pp th (NLO QCD, t-ch + s-ch) LHC HIGGS XS WG 2016 2 10 6 7 8 9 10 11 12 13 14 15 s [TeV]

Gluon fusion processes 3 Single Higgs production H Dominant Higgs production process Convergence is very slow 50 40 30 σ [pb] 20 10 LHC13TeV PDF4LHC15.0 PP->H+X LO NNLO NLO N3LO 30 50 70 90 110 130 150 170 190 210 230 250 μ [GeV] [Mistlberger 2018]

Gluon fusion processes 4 Higgs plus jet production g H Transverse momentum dependence Convergence is very slow dσ/dp TH (pb/gev) 0.12 0.1 0.08 0.06 0.04 p TH LO NLO NNLO ratio 3.5 3 2.5 2 1.5 1 p TH NLO/LO NNLO/NLO NNLO/LO 0.02 0.5 0 0 50 100 150 200 p TH (GeV) 0 0 100 200 300 400 500 600 p TH (GeV) [Chen, Gehrmann, Glover, Jaquier 2014]

Gluon fusion processes 5 Higgs plus Z production Z H Formally NNLO, but large Convergence is very slow sh=gev ff (exact) H;LO ff (exp 0) H;NLO ff (re scale) H;NLO ff (diff) H;NLO ff [2=2] H;NLO 7 11.2 23.9 24.9 26.1 26.5 8 16.0 35.2 35.4 37.2 38.8 13 52.4 129 113 121 140 14 61.8 155 133 142 168 NLO scale variation +21% 21% +20% 20% +14% 17% +13% 16% [Hasselhuhn, Luthe, Steinhauser 2016]

Gluon fusion processes 6 Higgs pair production H Measurement of trilinear Higgs coupling Convergence is very slow H ff H [fb] K (N)NLO X NNLO [%] LO 22.7 LO+NLO j 0 36.4 1.60 LO+NLO j 0+NNLO j 0 39.7 1.75 0 LO+NLO j 0+NNLO j 1 38.7 1.70 2:5 LO+NLO j 0+NNLO j 2 40.5 1.78 +2:0 [Grigo, Hoff, Steinhauser 2015]

Gluon fusion processes 7 Z pair production Z Z Higgs width from interference with gg H ZZ [Caola, Melnikov 2013] Convergence is very slow [Campbell, Czakon, Ellis, Kirchner 2016]

Gluon fusion processes at NLO 8 H g H [Spira, Djouadi, Graudenz, Zerwas 1995;... ] [Jones, Kerner, Luisoni 2018] Z H H H [Borowka et al. 2016] Z Z

Gluon fusion processes at NLO 9 Large mass expansion (LME) m t ŝ H g H [Dawson 1991; Djouadi, Spira, Zerwas 1991] [Harlander, Neumann, Ozeren, Wiesemann 2012;... ] Z H H H [Hasselhuhn, Luthe, Steinhauser 2016] [Grigo, Hoff, Steinhauser 2015; Degrassi, Giardino, Gröber 2016] Z Z [Melnikov, Dowling 2015; Campbell, Ellis, Czakon, Kirchner 2016; Caola et al. 2016]

Validity of the large mass expansion 10 Higgs pair production at LO Fails near the top threshold M HH 2m t 350 GeV 0.12 0.1 full LME dσlo/dmhh [fb/gev] 0.08 0.06 0.04 0.02 0 300 400 500 600 700 800 900 M HH [GeV]

Validity of the large mass expansion 11 Higgs pair production at NLO Use a rescaling to improve the prediction from the large-m t limit dff rescaled LME NLO =dx = dfflme NLO =dx dfflo LME dffexact =dx LO =dx : dσ/d mhh [fb/gev] 0.20 0.15 0.10 0.05 LO B-i. NLO HEFT NLO FTapprox LO basic HEFT NLO basic HEFT NLO dσ/d pt,h [fb/gev] 0.25 0.20 0.15 0.10 0.05 LO B-i. NLO HEFT NLO FTapprox LO basic HEFT NLO basic HEFT NLO K factor 0.00 2.0 1.5 1.0 0.5 300 400 500 600 700 800 900 1000 mhh [GeV] K factor 0.00 2.0 1.5 1.0 0.5 0 100 200 300 400 500 pt,h [GeV] [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke 2016]

FTapprox 12 Top mass dependence in real radiation Improvements from including the full top mass dependence in the real part (1 loop) at NLO [Maltoni, Vryonidou, Zaro 2014] and the double real part (1 loop) at NNLO [Grazzini et al. 2018] 0.20 s = 14 TeV s = 14 TeV 0.20 0.15 dσ/dmhh (fb/gev) 0.10 NNLOB-proj NNLONLO-i NNLOFTapprox NLO dσ/dp T,h1 (fb/gev) 0.15 0.10 NNLOB-proj NNLONLO-i NNLOFTapprox NLO 0.05 0.05 0.00 1.4 0.00 1.8 1.3 1.6 ratio to NLO 1.2 1.1 1.0 0.9 0.8 300 400 500 600 700 800 ratio to NLO 1.4 1.2 1.0 0.8 0.6 0 100 200 300 400 500 Mhh (GeV) pt,h1 (GeV)

Padé Approximation 13 [Broadhurst, Fleischer, Tarasov 1993; Fleischer, Tarasov 1994;... ] a; b; H = ytŝ 2mt s 2ı abt F A 1 F (z) Im(z) 1 F z = ŝ 4m 2 t LME 1 1 Re(z) 1

Padé Approximation 14 [Broadhurst, Fleischer, Tarasov 1993; Fleischer, Tarasov 1994;... ] Im(!) F a; b; H = ytŝ 2mt s 2ı abt F A 1 F (z) z = ŝ 4m 2 t z = -1 1 LME 1 z = 1 Re(!) Conformal mapping: z = 4! (1+!) 2-1

Padé Approximation 14 [Broadhurst, Fleischer, Tarasov 1993; Fleischer, Tarasov 1994;... ] Im(!) F a; b; H = ytŝ 2mt s 2ı abt F A 1 F (z) z = ŝ 4m 2 t z = -1 1 LME 1 z = 1 Re(!) Conformal mapping: z = 4! (1+!) 2-1 Padé approximation: [n=m](!) = Ansatz: Fix a i ; b i from LME F (z) = [n=m]`!(z) 1 + a R z from F P n i=0 a i! i 1+ P m i=1 b i! i ; a R [0:1; 10] z 0

Padé Approximation for gg H 15 F 1l 3.0 2.5 LME 2.0 Re 1.5 Im 1.0 0.5 0.0 0.0 0.5 1.0 2.0 5.0 20 z = m 2 H /(4m 2 t ) F 2l 10 5 0 Re LME -5 0.0 0.5 1.0 2.0 5.0 20 z = m H 2 /(4m t 2 ) Im 20 Padé approximants [1/3], [2/2], [3/1] from LME up to 1 m 8 t. Exclude approximants with poles for Re(z) [0; 8]; Im(z) [ 1; 1]. At NLO some instabilities emerge above the top threshold.

Threshold expansion 16 F 1l F 2l z 1 2ı(1 z) 3=2 + 13ı 3 (1 z)5=2 + O `(1 z) 7=2 ; z 1 C F ı 2 (1 z)ln(1 z) + ı ˆ3ı 2 (C F C A) 40C F + 4C A (1 z) 3=2 12 +C F 2ı 2 3 (1 z)2 ln(1 z) + O `(1 z) 5=2 ; ln(1 z) incompatible with Padé approximation, extended ansatz [n=m]`!(z) F = +s(z) 1 + a R z ln(1 z) absorbed into subtraction function s s analytic for z 0, constructed from,

Padé Approximation with threshold expansion 17 3.0 2.5 2.0 Re LME 3.0 2.5 2.0 Re LME F 1l 1.5 1.0 Im F 1l 1.5 1.0 Im 0.5 0.0 0.5 0.0 Thr 0.0 0.5 1.0 2.0 5.0 20 z = m H 2 /(4m t 2 ) threshold excl. (1 z) i log 0 0.0 0.5 1.0 2.0 5.0 20 z = m 2 H /(4m 2 t ) 10 5 Re LME Im 10 8 6 Re LME F 2l F 2l 4 Im 0 2-5 0.0 0.5 1.0 2.0 5.0 20 0 Thr -2 0.0 0.5 1.0 2.0 5.0 20 z = m H 2 /(4m t 2 ) z = m H 2 /(4m t 2 )

Padé approximation for vacuum polarisation 18 Compare numerical result for vacuum polarization at 3 loops to Padé approximants with n + m = 60 approx. exact 5 4 3 2 1 0 1 2 3 4 10 5 10 10 10 15 Re ( Π (2) ) n 0 l Im ( Π (2) ) n 0 l approx. exact 0.2 0.1 0 0.1 0.2 0.3 10 5 10 10 10 15 0 0.2 0.5 10 20 1 2 5 z [Maier, Marquard 2017] Re ( Π (2) ) n 1 l Im ( Π (2) ) n 1 l 0 0.2 0.5 1 2 5 z [Chetyrkin, Kühn, Steinhauser 1995; Hoang, Mateu, Zebarjad 2008; Kiyo, Maier, Maierhöfer, Marquard 2009]

Padé approximation for 2 2 processes 19 H H = y 2 t s 2ı abt F z ˆA 1 F 1 + A 2 F 2 Three ratios: z = ŝ ; r 4mt 2 H = m2 Hŝ ; r pt = p2 Ṱ s Given a phase space point (z; r H ; r pt ): 1 Compute threshold and large mass expansion for given r H ; r pt 2 Construct 100 approximants in z 3 Evaluate approximants for given z (physical m t )

Padé Approximation for gg( H ) ZZ 20 [Campbell, Ellis, Czakon, Kirchner 2016] 2 Re Z Z Z Z H! exact LME up to 1 mt 12 [3/3] [n/m] with n; m {2; 3} LME up to 1 mt 12 [3/3] [n/m] with n; m {2; 3}

Threshold expansion 21 Near threshold tops can only be on-shell when they are non-relativistic: p 0 t m t m t (1 z), ~p m t 1 z Hierarchy: m t (1 z) m t 1 z mt External gluons set directions n; n for collinear modes

Threshold expansion 21 Near threshold tops can only be on-shell when they are non-relativistic: p 0 t m t m t (1 z), ~p m t 1 z Hierarchy: m t (1 z) m t 1 z mt External gluons set directions n; n for collinear modes p 0 n p mt hard mt n-collinear hard mt 1 - z soft mt 1 - z mt(1-z) ultrasoft potential mt(1-z) ultrasoft n-collinear mt(1-z) mt 1 - z mt Potential Non-Relativistic QCD p mt(1-z) mt 1 - z mt n p Soft-Collinear Effective Theory [Pineda, Soto 97; Beneke et al. 98; Brambilla et al. 99] [Bauer et al. 00-01; Beneke et al. 02]

Threshold expansion 21 Near threshold tops can only be on-shell when they are non-relativistic: p 0 t m t m t (1 z), ~p m t 1 z Hierarchy: m t (1 z) m t 1 z mt External gluons set directions n; n for collinear modes p 0 n p mt hard mt n-collinear hard mt 1 - z soft mt 1 - z mt(1-z) ultrasoft potential mt(1-z) ultrasoft n-collinear mt(1-z) mt 1 - z mt Potential Non-Relativistic QCD p mt(1-z) mt 1 - z mt n p Soft-Collinear Effective Theory [Pineda, Soto 97; Beneke et al. 98; Brambilla et al. 99] [Bauer et al. 00-01; Beneke et al. 02] Unstable-Particle Effective Theory [Beneke, Chapovsky, Signer, Zanderighi 03, 04]

Threshold expansion 22 Master formula Integrating out the hard scale gives the following structure X Z D z 1 ia gg F = d 4 x F T k;l C (k) gg t t C(l) t t F +C gg F F io gg F (0) gg EFT : h i E io (l) t t F (x)io(k) gg t t (0) gg EFT O (k) gg t t O (l) t t HH + O (k) gg HH Resonant contribution: Propagation of non-relativistic top pair. Contains non-analytic terms 1 z and ln(1 z). Non-resonant contribution: Contribution from hard top loop (local operator in EFT). Analytical in (1 z).

Threshold expansion 22 Master formula Integrating out the hard scale gives the following structure X Z D z 1 ia gg F = d 4 x F T k;l C (k) gg t t C(l) t t F +C gg F F io gg F (0) gg EFT : h i E io (l) t t F (x)io(k) gg t t (0) gg EFT O (k) gg t t O (l) t t HH + O (k) gg HH The experience with the triangle form factor (single Higgs production) shows that knowledge of non-analytic terms is sufficient for a good reconstruction. Therefore, we only consider the resonant part.

Threshold expansion 23 Resonant matrix element Ladder exchanges of potential gluons yield Coulomb singularities ( s= 1 z) k =... Can be resummed into a non-relativistic Green function 8 X < 1 nrlo; A resonant A 0 (z = 1) 1 z 2l+1 k=0 k s 1 z : s; 1 z 2s ; s 1 z; (1 z) nrnlo; nrnnlo;

Threshold expansion 23 Resonant matrix element Ladder exchanges of potential gluons yield Coulomb singularities ( s= 1 z) k =... Can be resummed into a non-relativistic Green function 8 X < 1 nrlo; A resonant A 0 (z = 1) 1 z 2l+1 k=0 k s 1 z : s; 1 z 2s ; s 1 z; (1 z) nrnlo; nrnnlo; Collinear nrnlo corrections are scaleless.

Threshold expansion 23 Resonant matrix element Ladder exchanges of potential gluons yield Coulomb singularities ( s= 1 z) k =... Can be resummed into a non-relativistic Green function 8 X < 1 nrlo; A resonant A 0 (z = 1) 1 z 2l+1 k=0 k s 1 z : s; 1 z 2s ; s 1 z; (1 z) nrnlo; nrnnlo; Collinear nrnlo corrections are scaleless. Virtual ultrasoft gluon exchange between collinear gluons is scaleless. Ultrasoft ttg interaction is power-suppressed after decoupling transformation (nrnnnlo). [Beneke et al. 2010]

Threshold expansion 24 Resonant matrix element: ingredients 2l+3 1 z 2l+2 1 z 2l+1 1 z 2l 1 z 2l 1 1 z LO NLO NNLO nrlo nrnlo nrnnlo α 0 s α 1 s α 2 s nrlo: C (k) gg t t ; C(l) t t HH at tree level P-wave Green function G P (1 z) at nrlo [Beneke, Piclum, TR 2013] nrnlo: C (k) gg t t ; C(l) t t HH at one loop P-wave Green function G P (1 z) at nrnlo [Beneke, Piclum, TR 2013] O( 0s ; s) at nrnnlo: C (k) gg t t ; C(l) t t HH for (1 z) power-suppressed operators O( 0s ; s) of P-wave Green function G P (1 z) at nrnnlo

Padé approximation for gg HH 25 LO results dσlo/dmhh [fb/gev] 0.12 0.1 0.08 0.06 0.04 0.02 full [n/m] w/o THR [n/n ± 1, 3] 0 300 400 500 600 700 800 900 M HH [GeV]

Padé approximation for gg HH 26 NLO results compared to [Borowka et al. 2016] 0.00080 0.00070 p T = 100 GeV 0.00060 0.00050 Vfin 0.00040 0.00030 0.00020 0.00010 full reweighted HEFT [n/m] w/o thres [n/n ± 0, 2] 350 400 450 500 550 600 650 700 M HH [GeV] V f in 10 4 M HH [GeV] p T [GeV] HEFT [n=m] [n=n ± 0; 2] full 336.85 37.75 0:912 0:996 ± 0:004 0:990 ± 0:001 0:996 ± 0:000 350.04 118.65 1:589 1:933 ± 0:012 1:937 ± 0:010 1:939 ± 0:061 411.36 163.21 4:894 4:326 ± 0:183 4:527 ± 0:069 4:510 ± 0:124 454.69 126.69 6:240 5:300 ± 0:192 5:114 ± 0:051 5:086 ± 0:060 586.96 219.87 7:797 4:935 ± 0:583 5:361 ± 0:281 4:943 ± 0:057 663.51 94.55 8:551 5:104 ± 1:010 4:096 ± 0:401 4:120 ± 0:018

Padé approximation for gg ZZ 27 Vector coupling /z (1) B VV 6 4 2 0 x = 0.1 Re Preliminary Im LME to z 6 No THR /z (1) B VV 6 x = 0.1 LME to z 6 THR to z 5/2 4 Re 2 0 Im -2-2 (2) B VV /z no ln (-4 z) terms 0.0 0.5 1.0 2.0 5.0 20 250 200 150 100 50 0-50 -100 x = 0.1 Re Im z 0.0 0.5 1.0 2.0 5.0 20 z LME to z 6 No THR threshold excl. (1 z) i log 0 (2) B VV /z no ln (-4 z) terms 0.0 0.5 1.0 2.0 5.0 20 z 250 200 150 100 50 0-50 -100 x = 0.1 LME to z 6 THR to z 2 Re Im 0.0 0.5 1.0 2.0 5.0 20 z

Padé approximation for gg ZZ 28 Axial-vector coupling 1.0 0.5 x = 0.1 1.0 0.5 x = 0.1 (1) r Z 2 BAA 0.0-0.5-1.0 Re Im (1) r Z 2 BAA 0.0-0.5-1.0 Re Im no ln (-4 z) terms (2) r Z 2 BAA -1.5-2.0 20 10 0-10 -20-30 -40 LME to z 6 No THR 0.0 0.5 1.0 2.0 5.0 20 x = 0.1 Re Im 0.0 0.5 1.0 2.0 5.0 20 z z LME to z 6 No THR threshold excl. (1 z) i log 0 Preliminary no ln (-4 z) terms (2) r Z 2 BAA -1.5-2.0 20 10 0-10 -20-30 -40 LME to z 6 THR to z 5/2 0.0 0.5 1.0 2.0 5.0 20 x = 0.1 Re Im 0.0 0.5 1.0 2.0 5.0 20 z z LME to z 6 THR to z 2

Conclusions 29 Proof of principle: Padé approximations can capture top mass corrections in gluon fusion processes Threshold expansion is necessary to model the peak region Systematic improvement through more expansion terms (LME, threshold expansion, small mass expansion)

Outlook 30 Higher orders in threshold expansion

Outlook 30 Higher orders in threshold expansion Combination with small-mass expansion 0.30 m 4 t dσ LO (gg HH)/dθ θ=π/2 [fb/rad] 0.25 0.20 0.15 0.10 0.05 m 8 t m 16 t m 32 t exact mh 0 mt 0.00 250 500 750 1000 1250 1500 1750 2000 s [GeV] [Davies, Mishima, Steinhauser, Wellmann 2018]

Outlook 30 Higher orders in threshold expansion Combination with small-mass expansion Mass effects in three-loop form factors

Outlook 30 Higher orders in threshold expansion Combination with small-mass expansion Mass effects in three-loop form factors Mass effects in gg( H ) ZZ interference

Outlook 30 Higher orders in threshold expansion Combination with small-mass expansion Mass effects in three-loop form factors Mass effects in gg( H ) ZZ interference Electroweak corrections to Higgs pair production

Backup

Small-p T expansion 32 [Bonciani, Degrassi, Giardino, Gröber 2018] Expand for p 2 T + m2 H ŝ; 4m2 t σ LO partonic [fb] 1 0.8 0.6 0.4 full HEFT O(1/m 8 t ) O(p 0 T + m0 h ) O((p 2 T + m2 h )2 ) Vfin 0.00080 0.00070 0.00060 0.00050 0.00040 0.00030 full HEFT O(p 0 T + m0 h ) O(p 2 T + m2 h ) O((p 2 T + m2 h )2 ) 0.2 0.00020 0.00010 pt = 100 GeV 0 0 100 200 300 400 500 600 700 800 900 s [GeV] 400 500 600 700 800 900 MHH [GeV]