Exoplanetary Science with the E-ELT

Similar documents
Exoplanets at the E-ELT era

E-ELT s View of Exoplanetary Atmospheres

A New Era with E-ELT Drivers for circumstellar environment studies

Synergies between E-ELT and space instrumentation for extrasolar planet science

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Design Reference Mission. DRM approach

Exoplanet Science with E-ELT/METIS

Direct imaging characterisation of (exo-) planets with METIS

Revealing the evolution of disks at au from high-resolution IR spectroscopy

Science of extrasolar Planets A focused update

Adam Burrows, Princeton April 7, KITP Public Lecture

Jean- Luc Beuzit and David Mouillet

Exoplanets in the mid-ir with E-ELT & METIS

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA)

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Science Olympiad Astronomy C Division Event National Exam

Detection and characterization of exoplanets from space

Science with EPICS, the E-ELT planet finder

Direct imaging of extra-solar planets

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

Characterization of Exoplanets in the mid-ir with JWST & ELTs

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

ALMA Observations of the Disk Wind Source AS 205

Red dwarfs and the nearest terrestrial planets

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT

Direction - Conférence. The European Extremely Large Telescope

II Planet Finding.

Internal structure and atmospheres of planets

E-ELT S VIEW OF CIRCUMSTELLAR ENVIRONMENTS

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

Prospects for ground-based characterization of Proxima Centauri b

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report

SPICA Science for Transiting Planetary Systems

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST

Key Science Opportunities from Airships in Planetary & Small Bodies Science. Spitzer Keck Herschel

The Large UV Optical IR survey telescope. Debra Fischer

Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Young Solar-like Systems

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO)

Exoplanet Science in the 2020s

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

DIRECT PLANET DETECTION

The Physics of Exoplanets

CHARACTERIZING EXOPLANETS SATELLITE

Angular Resolution Universe. Universe

Synergies between and E-ELT

Characterization of Transiting Planet Atmospheres

The evolution of a Solar-like system. Young Solar-like Systems. Searching for Extrasolar Planets: Motivation

Exoplanet Atmospheres Observations. Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics

Looking to the Future: the rest of the planets

EPICS: A planet hunter for the European ELT

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Searching for Other Worlds: The Methods

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Perspectives for Future Groundbased Telescopes. Astronomy

Exoplanet Host Stars

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

Observations of Extrasolar Planets

Exo-Planetary atmospheres and host stars. G. Micela INAF Osservatorio Astronomico di Palermo

From the VLT to ALMA and to the E-ELT

Highlights of the program of. The European Southern Observatory

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey

The Austrian contribution to the European Extremely Large Telescope

Exoplanet science with ground based ELTs

Extra Solar Planetary Systems and Habitable Zones

Finding bio-signatures on extrasolar planets, how close are we?

2010 Pearson Education, Inc.

SPIRou status. and the SPIRou team.

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Overall science goals and top level AO requirements for the E-ELT

Planets are plentiful

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration

Protoplanetary Disk * ELT *

Hot Dust Around Young Stars and Evolved Stars

What will the future bring? Scientific discoveries expected from the E-ELT

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Exoplanet atmospheres

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs

Professional / Amateur collaborations in exoplanetary science

Lecture 20: Planet formation II. Clues from Exoplanets

Finding Other Earths. Jason H. Steffen. Asset Earth Waubonsee Community College October 1, 2009

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

Planetary Populations through Detection Surveys

CASE/ARIEL & FINESSE Briefing

Extra-solar Planets (Exoplanets)

Transcription:

SF2A, MONTPELLIER, 4-7 JUNE 2013 Exoplanetary Science with the E-ELT Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium

Outline Exoplanetary Science with the E-ELT I- The E-ELT project II- Planet-forming Zones III- Exoplanetology IV- Planetary Archeology

I- The E-ELT Project The Telescope 40-m class telescope: largest opticalinfrared telescope in the world. (GMT = 25m; TMT = 30m) Segmented primary mirror. Adaptive optics assisted telescope. Wide field of view: 7 arcmin. Exquisite spatial resolution > 12mas@K-band Unprecedented sensitivity

I- The E-ELT Project Timeline: current/future missions 2012 2014 2016 2018 2020 2022 2024 2026 2028 Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP Space: Spitzer, Herschel, Kepler, CoRoT - VLT & VLTI 2 nd & 3 rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY - ALMA (ACA) - GAIA - Cheops - TESS - SKA - JWST - EChO/PLATO/FINESS? - TMT - GMT - E-ELT

I- The E-ELT Project Instrument Roadmap Instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry

I- The E-ELT Project 1st Light Instruments Instrument Roadmap Instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

I- The E-ELT Project 2 nd Pool Instruments Instrument Roadmap Instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

I- The E-ELT Project XAO Instrument Instrument Roadmap Instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

I- The E-ELT Project Science Priority / Exoplanets Instrument Roadmap Instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode SCAO, MCAO SCAO, LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40µas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Polarimetry Low Medium High

II- Planet-Forming Zones Artist s View ESO-PR-0942

II- Planet-Forming Zones Key Scientific Questions. Disk Structure & Dynamics (Gas & Dust). Chemistry: Water & Organics in Planet-Forming Zones. Planetary Formation o Initial conditions. Planets/Disk interactions Fomalhaut ALMA/HST Bowler et al. 12

II- Planet-Forming Zones 1 L sun @100 pc E-ELT s View of Circumstellar Environment Co-rotation radius Magnetospheric radius dust sublimation crystallization snow line Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 100pc = 1 AU E-MIDIR E-IFU, E-HIRES VLT/CRIRES ALMA

II- Planet-Forming Zones 1 L sun @100 pc E-ELT s View of Circumstellar Environment Co-rotation radius Magnetospheric radius dust sublimation crystallization snow line Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU Spectro-astrometry E-MIDIR E-IFU, E-HIRES VLT/CRIRES ALMA

E-MIDIR II- Planet-Forming Zones Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Gap at 18 AU (sub-mm continuum emission Brown e al. 07) Gas Dynamics E-ELT-MIDIR simulations of 12 CO line emission at 4.7µm of SR21. o Left: Continuum subtracted and velocity channel co-added o Right: Velocity map with a resolving power of 100 000 (3 km/s) 32 AU

E-MIDIR II- Planet-Forming Zones Gas Dynamics Water & Organics Distribution and Dynamics Disk cooling & Planetesimals formation Organic/Prebiotic chemistry (CH4, C2H2, HCN ) Isotopic Fractionation Transfer to Terrestrial Planets. Keck-NIRSPEC. high HRS (R = 25 000) in L-band.. Detection of H20 and OH radicals MIR lines. Hot (800K) water from the inner AUs DR Tau, AS 205 N; Salyk et al. 08

E-MIDIR II- Planet-Forming Zones Asymmetries/Spirals in proto-planetary disks Observing Planetary Formation E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST

E-MIDIR II- Planet-Forming Zones Observing Planetary Formation Asymmetries/Spirals in proto-planetary disks E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST

E-MIDIR II- Planet-Forming Zones Observing Planetary Formation Asymmetries/Spirals in proto-planetary disks E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST

E-MIDIR II- Planet-Forming Zones Observing Planetary Formation Asymmetries/Spirals in proto-planetary disks E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mjy/as2 at 0.1-0.2 (10 20 AU) ELT-MIR very competitive with JWST

III- Exoplanets Artist s View ESO-PR-1106

III- Exoplanets Key Scientific Questions. Architecture of Exoplanetary Systems?. Formation & Evolution Processes. How does it depend on the Host properties? (Mass, Age, Composition ). How frequent are the Telluric planets in the HZ?. Physics & Atmosphere of Exoplanets? (Telluric & Giant). Bio-Signatures Discovery & Conditions favorable for Life?

III- Exoplanets Exploration of Telluric Planets Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms 1), Observed (Mayor et al. 11) Predicted (Mordasini et al. 09) corrected observed

E-HIRES III- Exoplanets Exploration of Telluric Planets Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms 1; left), o ESPRESSO on the VLT(precision 10 cms 1; middle) o and HIRES on the E-ELT(precision 1 cms 1; right). > HIRES, required to detect Earth-like planets in HZ of solar-type stars

E-HIRES III- Exoplanets Twin Earth Discovery Simulations: 1.8 M Earth Exo-Earth in HZ (P=145 days) around a bright and low-activity K1V star. RV precision: 1 cm/s. Limitations: instr. noise, stellar oscillations, granulation and activity. Dedicated observing strategy: 3 meas./night, every 3 nights over 8 months Periodogram: 3σ detection (red)

E-HIRES, E-MIDIR, E-PCS III- Exoplanets Planetary Atmospheres Reflected, Transmitted or Emitted light of Exoplanets Strongly or non-strongly irradiated planets Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths) - Geometric Albedos - Chemical Composition (H20, CH4, CO, CO2, NH3 ) - Atmosphere s Dynamics. Inversion,. Vertical Mixing,. Circulation,. Evaporation, Imprints of Formation Mechanisms? Secondary-Eclipse/Strongly irradiated GPs; Knutson et al. 09 No Thermal Inversion Thermal inversion Spitzer

E-IFU, E-MIDIR, E-PCS III- Exoplanets Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr > Access Dynamical Mass Imaging Planetary Systems Hd95086; Rameau et al. 13 January 11 th, 2012 Bpic; Lagrange et al. 10 HR8799; Marois et al. 10 NaCo (Lp) 0.5 ESO-PR-1324 (June 3 rd, 2013)

E-IFU, E-MIDIR, E-PCS III- Exoplanets Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr > Access Dynamical Mass Imaging Planetary Systems GAIA SPHERE E-IFU/MIDIR Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10 E-PCS

E-IFU, E-MIDIR, E-PCS III- Exoplanets Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr > Access Dynamical Mass Imaging Planetary Systems Mordasini et al. 12 No Accretion Shock Formation/Evolution Theories L Mass Relation Gas Accretion Phase Accretion Shock

E-IFU, E-MIDIR, E-PCS III- Exoplanets Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr > Access Dynamical Mass Imaging Planetary Systems Formation/Evolution Theories L Mass Relation Gas Accretion Phase Planetary System Architecture Dynamical stability Planet-disk interactions Bpic b; ESO PR 0842

IV- Planetary Archeology Artist s View NASA/JPL CALTECH

IV- Planetary Archeology White dwarfs polluted by planetary debris Photospheric abundances: Fe, Si, Ca, C, O, Mg abundances Physical/Chemical properties of WD circumstellar disks Frequency of terrestrial planet building Bulk chemistry of solid planetary bodies Mass constraints for exoplanetary building blocks Frequency of water-rich exo-asteroids Constraints on habitable environments Farihi et al. 2010

Want to know more The E-ELT Science Case: www.eso.org/sci/facilities/eelt/science/doc/eelt_sciencecase.pdf The E-ELT Design Reference Mission: www.eso.org/sci/facilities/eelt/science/doc/ drm_report.pdf The science users web pages: www.eso.org/sci/facilities/eelt Shaping the E-ELT Conference (Fév 2013) www.eso.org/~sramsay/eelt2013-presentations/ The PNPS E-ELT Workshop (Fréjus, Fev 2013) www.pnps.univ-montp2.fr/spip.php?article50 E-ELT Exoplanetary Science Colloquium (2.2014)

Thank You!

E-IFU, E-HIRES & E-MIDIR 1/ Disks Star disk interactions Star/Disk evolution under the microscope Geometry of Accretion Channels Inner Disk Properties (Warp, asymmetries ) Role of Magnetic Fields (Config., Reconnection) Jet L aunching Zone, Stellar & Disk Winds E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro. VLT/CRIRES, CO emission lines at 4.7µm (< 2 AU) AS 205 N, Pontopiddan et al. 11