Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1

Similar documents
PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7.

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

UNIVERSITY OF AKRON Department of Civil Engineering

(Round up to the nearest inch.)

Presented by: Civil Engineering Academy

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

CHAPTER II EXPERIMENTAL INVESTIGATION

Design of Beams (Unit - 8)

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

RESILIENT INFRASTRUCTURE June 1 4, 2016

Mechanics of Materials Primer

Project data Project name Project number Author Description Date 26/04/2017 Design code AISC dome anchor. Material.

Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN :2005/AC:2009

Structural Steelwork Eurocodes Development of A Trans-national Approach

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.)

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

ENCE 455 Design of Steel Structures. III. Compression Members

General Comparison between AISC LRFD and ASD

A CONNECTION ELEMENT FOR MODELLING END-PLATE CONNECTIONS IN FIRE

Structural Steelwork Eurocodes Development of A Trans-national Approach

7.3 Design of members subjected to combined forces

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

MODULE F: SIMPLE CONNECTIONS

Appendix J. Example of Proposed Changes

3. Stability of built-up members in compression

CO~RSEOUTL..INE. revisedjune 1981 by G. Frech. of..a.pqij~t(..~ttsa.fidteconol.q.gy. Sault ",Ste'...:M~ri,e.: SAUl. ir.ft\,nl~t';~l' G ". E b:.

GENERAL GEOMETRY LEFT SIDE BEAM RIGHT SIDE BS :2000/AC:2009. Ratio 0.17

[5] Stress and Strain

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

PERFORATED METAL DECK DESIGN

An investigation of the block shear strength of coped beams with a welded. clip angles connection Part I: Experimental study


Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

ON THE DESIGN OF A STEEL END-PLATE BEAM-TO-COLUMN BOLTED JOINT ACCORDING TO PN-EN

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

Structural Steelwork Eurocodes Development of a Trans-National Approach

JointsForTekla Ver January

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

Chapter. Materials. 1.1 Notations Used in This Chapter

Steel Structures Design and Drawing Lecture Notes

2012 MECHANICS OF SOLIDS

Steel Design. Notation:

Beam Bending Stresses and Shear Stress

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS

CHAPTER 4. Stresses in Beams

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E

CONNECTION DESIGN. Connections must be designed at the strength limit state

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

SKILLS Project. October 2013

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

The subject of this paper is the development of a design

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

Basis of Design, a case study building

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel

SAULTCOLLEGE of AppliedArtsand Technology SaultSte. Marie COURSEOUTLINE

BASE PLATE CONNECTIONS

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

CHAPTER 2 LITERATURE REVIEW

TRANSVERSE PLATE-TO-SQUARE/RECTANGULAR HSS CONNECTIONS

Unified Design Criteria for Steel Cantilever Plate Connection Elements. Pouya Salem

MODULE C: COMPRESSION MEMBERS

Design of Shear Tab Connections for Gravity and Seismic Loads

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Steel Post Load Analysis

The plastic moment capacity of a composite cross-section is calculated in the program on the following basis (BS 4.4.2):

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

林保均 / Pao-Chun Lin. National Center for Research on Earthquake Engineering M.S. / Civil Engineering Department, National Taiwan University

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

3 Hours/100 Marks Seat No.

Structural Steelwork Eurocodes Development of A Trans-national Approach

BLOCK SHEAR BEHAVIOUR OF COPED STEEL BEAMS

The University of Melbourne Engineering Mechanics

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Unfinished Bolt ordinary, common, rough or black bolts High strength Bolt friction type bolts

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:

LOAD BEARING CAPACITY OF SPLICED COLUMNS WITH SINGLE ROW BOLTED BUTT-PLATES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

SECTION 7 DESIGN OF COMPRESSION MEMBERS

Supplement: Statically Indeterminate Trusses and Frames

DESIGN OF BEAMS AND SHAFTS

Lecture-04 Design of RC Members for Shear and Torsion

Steel Design. Notation: a A A b A e

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Chapter Objectives. Design a beam to resist both bendingand shear loads

Transcription:

Current Date: 08-Dec-13 7:05 PM Units system: SI File name: E:\ram\1\1.cnx\ Microsoft Steel connections Detailed report Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1 Design code : AISC 360-2005 LRFD Family Type : Moment end plate (MEP) : Beam - Column flange (BCF) LOADS Members Load Type V2 V3 M33 M22 Axial [KN] [KN] [KN*m] [KN*m] [KN] --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Right beam 1 - DL Design 200.00 -- 300.00 -- -- 1 - D1 Design 280.00 -- 420.00 -- -- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min. value Max. value Sta. References ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Extended end plate Vertical edge distance [mm] 40.00 33.65 152.40 Sec. J3.5 L emin = e dmin + C 2 = 33.65[mm] + 0[mm] = 33.65[mm] Tables J3.4, J3.5 L emax = min(12*t p, 6[in]) = min(12*20[mm], 6[in]) = 152.4[mm] Sec. J3.5 Horizontal edge distance [mm] 40.00 33.65 152.40 Sec. J3.5 L emin = e dmin + C 2 = 33.65[mm] + 0[mm] = 33.65[mm] Tables J3.4, J3.5 L emax = min(12*t p, 6[in]) = min(12*20[mm], 6[in]) = 152.4[mm] Sec. J3.5 Haunch vertical bolt spacing [mm] 70.00 53.33 -- Sec. J3.3 s min = 8/3*d = 8/3*20[mm] = 53.333333[mm] Sec. J3.3 Horizontal center-to-center spacing (gage) [mm] 65.00 61.00 101.90 Sec. J3.3, DG4 Sec. 2.4, DG4 Sec. 2.1, 2.4, DG16 Sec. 2.5 g min = max(8/3*d, 2*k 1c + 2*d, t wb + 2*w + d h ) = max(8/3*20[mm], 2*10.5[mm] + 2* 20[mm], 6[mm] + 2*6.35[mm] + 21.5875[mm]) = 61[mm] Sec. J3.3, DG4 Sec. 2.4 g max = b fb = 101.9[mm] DG4 Sec. 2.1,

2.4, DG16 Sec. 2.5 Inner distance from bolt centerline to top flange [mm] 40.00 32.70 -- DG4 Sec. 2.1 d<=1[in] 20[mm]<=1[in] True p fmin = d + 1/2[in] = 20[mm] + 1/2[in] = 32.7[mm] DG4 Sec. 2.1 Inner distance from bolt centerline to haunch flange [mm] 40.00 32.70 -- DG4 Sec. 2.1 d<=1[in] 20[mm]<=1[in] True p fmin = d + 1/2[in] = 20[mm] + 1/2[in] = 32.7[mm] DG4 Sec. 2.1 Bolt diameter [mm] 20.00 -- 38.10 DG4 Sec. 1.1 d bmax = 1.5[in] DG4 Sec. 1.1 Moment end plate behavior at beam top flange Thick plate behavior controlled by no prying bolt rupture Moment end plate behavior at beam bottom flange Thick plate behavior controlled by no prying bolt rupture Beam Weld size (Top flange) [1/16in] 4 5 -- table J2.4 Weld size (Bottom flange) [1/16in] 4 5 -- table J2.4 Weld size (Web) [1/16in] 4 5 -- table J2.4 Weld size (Haunch flange) [1/16in] 4 5 -- table J2.4 Weld size (Haunch to beam) [1/16in] 4 5 -- table J2.4 Support Flange thickness [mm] 7.00 16.54 -- DG16 Sec 2.5, DG16 Eq. 2-7 s = 0.5*(b p *g) 1/2 = 0.5*(145[mm]*65[mm]) 1/2 = 48.54122[mm] DG16 Table 3-2 p f = min(p f, s) = min(40[mm], 48.54122[mm]) = 40[mm] DG16 Table 3-2 Y p = b p /2*(h 1 *(1/p f ) + h 2 *(1/s)) + 2/g*(h 1 *(p f + 0.75*p b ) + h 2 *(s + 0.25* p b )) + g/2 = 145[mm]/2*(459.37[mm]*(1/40[mm]) + 389.37[mm]*(1/48.54122[mm])) + 2/65[mm]* (459.37[mm]*(40[mm] + 0.75*70[mm]) + 389.37[mm]*(48.54122[mm] + 0.25*70[mm])) + 65[mm]/2 = 3545.34[mm] DG16 Table 3-3 IsFlushConnection True r = 1.25 DG16 Sec 2.5 M np = 2*P t *( d n ) = 2*137.2[KN]*(840.35[mm]) = 230.59[KN*m] DG16 Sec 2.5 M np = 2*P t *( d n ) = 2*137.2[KN]*(840.35[mm]) = 230.59[KN*m] DG16 Sec 2.5 s = 0.5*(b p *g) 1/2 = 0.5*(145[mm]*65[mm]) 1/2 = 48.54122[mm] DG16 Table 3-2 p f = min(p f, s) = min(40[mm], 48.54122[mm]) = 40[mm] DG16 Table 3-2 Y p = b p /2*(h 1 *(1/p f ) + h 2 *(1/s)) + 2/g*(h 1 *(p f + 0.75*p b ) + h 2 *(s + 0.25* p b )) + g/2 = 145[mm]/2*(459.37[mm]*(1/40[mm]) + 389.37[mm]*(1/48.54122[mm])) + 2/65[mm]* (459.37[mm]*(40[mm] + 0.75*70[mm]) + 389.37[mm]*(48.54122[mm] + 0.25*70[mm])) + 65[mm]/2 = 3545.34[mm] DG16 Table 3-3 M pl = F yp *t 2 p *Y p = 0.275[KN/mm2]*20[mm] 2 *3545.34[mm] = 389.99[KN*m] DG16 Sec 2.5

w' = b p /2 - (d + 1/16[in]) = 145[mm]/2 - (20[mm] + 1/16[in]) = 50.9125[mm] DG16 Sec 2.5 a i = 3.682*(t p /d) 3 [in] - 0.085[in] = 3.682*(20[mm]/20[mm]) 3 [in] - 0.085[in] = 91.363797[mm] DG16 Sec 2.5 F i ' = (t p 2 *F yp *(0.85*b p /2 + 0.80*w') + PI*d 3 *F nt /8)/(4*p fi ) = (20[mm] 2 *0.275[KN/ mm2]*(0.85*145[mm]/2 + 0.80*50.9125[mm]) + PI*20[mm] 3 *0.56[KN/mm2]/8)/(4*40[mm]) = 81.364637[K... DG16 Sec 2.5 discr = F yp 2-3*(F i '/(w'*t p )) 2 = 0.275[KN/mm2] 2-3*(81.364637[KN]/(50.9125[mm]* 20[mm])) 2 = 56469927644.54[KN] DG16 Sec 2.5 Q maxi = (w'*t p 2 )/(4*a i )*(F yp 2-3*(F i '/(w'*t p )) 2 ) 1/2 = (50.9125[mm]*20[mm] 2 )/ (4*91.363797[mm])*(0.275[KN/mm2] 2-3*(81.364637[KN]/(50.9125[mm]*20[mm])) 2 ) 1/2 = 13.242162[KN] DG16 Sec 2.5 M q = max(2*(p t - Q maxi )*(d 1 + d 2 ), 2*T b *(d 1 + d 2 )) = max(2*(137.2[kn] - 13.242162[KN])*(455.17[mm] + 385.17[mm]), 2*0[KN]*(455.17[mm] + 385.17[mm])) = 208.34[KN*m] DG16 Sec 2.5 IsFlushConnection True r = 1.25 DG16 Sec 2.5 ThickPlateSmallerBoltsBehaviorApply = M np <( bmpl /1.11) = 230.59[KN*m]<(389.99[KN*m]/1.11) = True DG16 Sec 2.5 t preq = ((1.11* r * *M np )/( b *F yp *Y p )) 1/2 = ((1.11*1.25*0.75*230.59[KN*m])/(0.9* 0.275[KN/mm2]*3545.34[mm])) 1/2 = 16.536813[mm] DG16 Eq. 2-7 Horizontal edge distance [mm] 18.30 33.65 84.00 Sec. J3.5 L emin = e dmin + C 2 = 33.65[mm] + 0[mm] = 33.65[mm] Tables J3.4, J3.5 L emax = min(12*t p, 6[in]) = min(12*7[mm], 6[in]) = 84[mm] Sec. J3.5 Column flange behavior at beam top flange Thin plate behavior controlled by plate yielding Column flange behavior at beam bottom flange Thin plate behavior controlled by plate yielding WARNINGS Bolt gage and bolt horizontal edge distance produce unsuitable geometry. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Moment end plate TOP FLANGE Flexural yielding [KN*m] 219.13 0.00 1 - D1 0.00 DG16 Sec 2.5 s = 0.5*(b p *g) 1/2 = 0.5*(145[mm]*65[mm]) 1/2 = 48.54122[mm] DG16 Table 3-2 p f = min(p f, s) = min(40[mm], 48.54122[mm]) = 40[mm] DG16 Table 3-2 Y p = b p /2*(h 1 *(1/p f + 1/s)) + 2/g*(h 1 *(p f + s)) = 145[mm]/2*(458.8[mm]*(1/40[mm] + 1/ 48.54122[mm])) + 2/65[mm]*(458.8[mm]*(40[mm] + 48.54122[mm])) = 2766.76[mm] DG16 Table 3-2 M pl = F yp *t 2 p *Y p = 0.275[KN/mm2]*20[mm] 2 *2766.76[mm] = 304.34[KN*m] DG16 Sec 2.5 IsFlushConnection True r = 1.25 DG16 Sec 2.5 M n = b *M pl / r = 0.9*304.34[KN*m]/1.25 = 219.13[KN*m] DG16 Sec 2.5 No prying bolt moment strength [KN*m] 93.62 0.00 1 - D1 0.00 DG16 Sec 2.5 M np = 2*P t *( d n ) = 2*137.2[KN]*(454.89[mm]) = 124.82[KN*m] DG16 Sec 2.5 M n = *M np = 0.75*124.82[KN*m] = 93.61572[KN*m] DG16 Sec 2.5 Bolts shear [KN] 137.81 0.00 1 - D1 0.00 Eq. J3-1 R n = 2 * ( *F nv *A b ) = 2 * (0.75*0.375[KN/mm2]*245[mm2]) = 137.81[KN] Eq. J3-1 Connector bolt bearing [KN] 436.34 0.00 1 - D1 0.00 Eq. J3-6 L c-end = max(0.0, L e - d h /2) = max(0.0, 40[mm] - 21.5875[mm]/2) = 29.20625[mm] Sec. J4.10

L c-spa = max(0.0, s - d h ) = max(0.0, 0[mm] - 21.5875[mm]) = 0[mm] Sec. J4.10 R n = *(min(k 1 *L c-end, k 2 *d) + min(k 1 *L c-spa, k 2 *d)*(n - 1))*t p *F u * n c = 0.75*(min(1.2*29.20625[mm], 2.4*20[mm]) + min(1.2*0[mm], 2.4*20[mm])*(1-1))*20[mm]* 0.415[KN/mm2]*2 = 436.34[KN] Eq. J3-6 Shear yielding [KN] 430.65 420.77 1 - D1 0.98 DG4 Eq. 3.12 R n = *0.6*F yp *b p *t p = 0.9*0.6*0.275[KN/mm2]*145[mm]*20[mm] = 430.65[KN] DG4 Eq. 3.12 BOTTOM FLANGE (Haunch) Flexural yielding [KN*m] 280.79 420.00 1 - D1 1.50 DG16 Sec 2.5 s = 0.5*(b p *g) 1/2 = 0.5*(145[mm]*65[mm]) 1/2 = 48.54122[mm] DG16 Table 3-2 p f = min(p f, s) = min(40[mm], 48.54122[mm]) = 40[mm] DG16 Table 3-2 Y p = b p /2*(h 1 *(1/p f ) + h 2 *(1/s)) + 2/g*(h 1 *(p f + 0.75*p b ) + h 2 *(s + 0.25* p b )) + g/2 = 145[mm]/2*(459.37[mm]*(1/40[mm]) + 389.37[mm]*(1/48.54122[mm])) + 2/65[mm]* (459.37[mm]*(40[mm] + 0.75*70[mm]) + 389.37[mm]*(48.54122[mm] + 0.25*70[mm])) + 65[mm]/2 = 3545.34[mm] DG16 Table 3-3 M pl = F yp *t 2 p *Y p = 0.275[KN/mm2]*20[mm] 2 *3545.34[mm] = 389.99[KN*m] DG16 Sec 2.5 IsFlushConnection True r = 1.25 DG16 Sec 2.5 M n = b *M pl / r = 0.9*389.99[KN*m]/1.25 = 280.79[KN*m] DG16 Sec 2.5 No prying bolt moment strength [KN*m] 172.94 420.00 1 - D1 2.43 DG16 Sec 2.5 M np = 2*P t *( d n ) = 2*137.2[KN]*(840.35[mm]) = 230.59[KN*m] DG16 Sec 2.5 M n = *M np = 0.75*230.59[KN*m] = 172.94[KN*m] DG16 Sec 2.5 Bolts shear [KN] 275.63 280.00 1 - D1 1.02 Eq. J3-1 R n = 4 * ( *F nv *A b ) = 4 * (0.75*0.375[KN/mm2]*245[mm2]) = 275.63[KN] Eq. J3-1 Connector bolt bearing [KN] 1033.94 280.00 1 - D1 0.27 Eq. J3-6 L c-end = max(0.0, L e - d h /2) = max(0.0, 40[mm] - 21.5875[mm]/2) = 29.20625[mm] Sec. J4.10 L c-spa = max(0.0, s - d h ) = max(0.0, 70[mm] - 21.5875[mm]) = 48.4125[mm] Sec. J4.10 R n = *(min(k 1 *L c-end, k 2 *d) + min(k 1 *L c-spa, k 2 *d)*(n - 1))*t p *F u * n c = 0.75*(min(1.2*29.20625[mm], 2.4*20[mm]) + min(1.2*48.4125[mm], 2.4*20[mm])*(2-1))*20[mm]* 0.415[KN/mm2]*2 = 1033.94[KN] Eq. J3-6 Shear yielding [KN] 430.65 420.77 1 - D1 0.98 DG4 Eq. 3.12 R n = *0.6*F yp *b p *t p = 0.9*0.6*0.275[KN/mm2]*145[mm]*20[mm] = 430.65[KN] DG4 Eq. 3.12 R n = *0.6*F yp *b p *t p = 0.9*0.6*0.275[KN/mm2]*145[mm]*20[mm] = 430.65[KN] DG4 Eq. 3.12 Beam Web weld shear strength [KN] 219.61 280.00 1 - D1 1.27 Eq. J2-4 F w = 0.6*F EXX = 0.6*0.482631[KN/mm2] = 0.289578[KN/mm2] Sec. J2.4 A w = (2) 1/2 /2*(D/16)*[in]*L = (2) 1/2 /2*(4/16)*[in]*112.6[mm] = 505.59[mm2] Sec. J2.4 R n = 2 * ( *F w *A w ) = 2 * (0.75*0.289578[KN/mm2]*505.59[mm2]) = 219.61[KN] Eq. J2-4 Web weld strength to reach yield stress [KN/m] 2925.55 1485.00 1 - D1 0.51 Eq. J4-1, Eq. J2-4 R n = *F y *t w = 0.9*0.275[KN/mm2]*6[mm] = 1485[KN/m] Eq. J4-1 LoadAngleFactor = 1 + 0.5*(sin( )) 1.5 = 1 + 0.5*(sin(1.570796)) 1.5 = 1.5 p. 8-9 F w = 0.6*F EXX *LoadAngleFactor = 0.6*0.482631[KN/mm2]*1.5 = 0.434367[KN/mm2] Sec. J2.5 R w = 2 * ( *F w *(2) 1/2 /2*D/16[in]) = 2 * (0.75*0.434367[KN/mm2]*(2) 1/2 /2*4/16[in]) = 2925.55[KN/m] Eq. J2-4

Shear yielding [KN] 254.63 280.00 1 - D1 1.10 Eq. J4-3 A g = L p *t p = 257.2[mm]*6[mm] = 1543.2[mm2] Sec. D3-1 R n = *0.60*F y *A g = 1*0.60*0.275[KN/mm2]*1543.2[mm2] = 254.63[KN] Eq. J4-3 TOP FLANGE Flange weld capacity [KN] 313.91 841.54 1 - D1 2.68 Eq. J2-4 LoadAngleFactor = 1 + 0.5*(sin( )) 1.5 = 1 + 0.5*(sin(1.570796)) 1.5 = 1.5 p. 8-9 F w = 0.6*F EXX *LoadAngleFactor = 0.6*0.482631[KN/mm2]*1.5 = 0.434367[KN/mm2] Sec. J2.5 A w = (2) 1/2 /2*(D/16)*[in]*L = (2) 1/2 /2*(4/16)*[in]*214.6[mm] = 963.58[mm2] Sec. J2.4 R n = *F w *A w = 0.75*0.434367[KN/mm2]*963.58[mm2] = 313.91[KN] Eq. J2-4 BOTTOM FLANGE Flange weld capacity [KN] 313.91 841.54 1 - D1 2.68 Eq. J2-4 LoadAngleFactor = 1 + 0.5*(sin( )) 1.5 = 1 + 0.5*(sin(1.570796)) 1.5 = 1.5 p. 8-9 F w = 0.6*F EXX *LoadAngleFactor = 0.6*0.482631[KN/mm2]*1.5 = 0.434367[KN/mm2] Sec. J2.5 A w = (2) 1/2 /2*(D/16)*[in]*L = (2) 1/2 /2*(4/16)*[in]*214.6[mm] = 963.58[mm2] Sec. J2.4 R n = *F w *A w = 0.75*0.434367[KN/mm2]*963.58[mm2] = 313.91[KN] Eq. J2-4 Beam haunch Yielding strength due to axial load [KN] 176.02 940.87 1 - D1 5.35 Eq. J4-1 R n = *F y *A g = 0.9*0.275[KN/mm2]*711.2[mm2] = 176.02[KN] Eq. J4-1 Compression strength [KN] 35.13 0.00 1 - D1 0.00 Eq. J4-6 r = t p /(12) 1/2 = 7[mm]/(12) 1/2 = 2.020726[mm] Sec. E2 K*L/r>25 0.65*559.02[mm]/2.020726[mm]>25 True F e = PI 2 *E/(K*L/r) 2 = PI 2 *205[KN/mm2]/(0.65*559.02[mm]/2.020726[mm]) 2 = 0.062574[KN/mm2] Eq. E3-4 F e >=0.44*Q*F y 0.062574[KN/mm2]>=0.44*1*0.275[KN/mm2] False F cr = 0.877*F e = 0.877*0.062574[KN/mm2] = 0.054877[KN/mm2] Sec. E7 A g = L p *t p = 101.6[mm]*7[mm] = 711.2[mm2] Sec. D3-1 P n = *F cr *A g = 0.9*0.054877[KN/mm2]*711.2[mm2] = 35.125746[KN] Eq. J4-6 Flange weld capacity [KN] 309.23 841.54 1 - D1 2.72 Eq. J2-4 LoadAngleFactor = 1 + 0.5*(sin( )) 1.5 = 1 + 0.5*(sin(1.570796)) 1.5 = 1.5 p. 8-9 F w = 0.6*F EXX *LoadAngleFactor = 0.6*0.482631[KN/mm2]*1.5 = 0.434367[KN/mm2] Sec. J2.5 A w = (2) 1/2 /2*(D/16)*[in]*L = (2) 1/2 /2*(4/16)*[in]*211.4[mm] = 949.21[mm2] Sec. J2.4 R n = *F w *A w = 0.75*0.434367[KN/mm2]*949.21[mm2] = 309.23[KN] Eq. J2-4 Web weld capacity [KN] 975.18 846.57 1 - D1 0.87 Sec. J2.4, Eq. J2-9 F w = 0.6*F EXX = 0.6*0.482631[KN/mm2] = 0.289578[KN/mm2] Sec. J2.4 A w = (2) 1/2 /2*(D/16)*[in]*L = (2) 1/2 /2*(4/16)*[in]*500[mm] = 2245.06[mm2] Sec. J2.4 R wl = 2 * ( *F w *A w ) = 2 * (0.75*0.289578[KN/mm2]*2245.06[mm2]) = 975.18[KN] Eq. J2-9 Local flange bending [KN] 109.15 420.77 1 - D1 3.86 Eq. J10-1 IsMemberEnd False R n = *6.25*t 2 f *F yf = 0.9*6.25*8.4[mm] 2 *0.275[KN/mm2] = 109.15[KN] Eq. J10-1 Local web yielding [KN] 143.55 420.77 1 - D1 2.93 Eq. J10-2 IsBeamReaction False N = N = 7[mm] Sec. J10-2 IsMemberEnd False R n = *(5*k + N)*F yw *t w = 1*(5*16[mm] + 7[mm])*0.275[KN/mm2]*6[mm] = 143.55[KN] Eq. J10-2 Web crippling [KN] 201.35 0.00 1 - D1 0.00 Eq. J10-4

IsBeamReaction False N = N = 7[mm] Sec. J10-2 R n = *0.80*t w 2 *(1 + 3*(N/d)*(t w /t f ) 1.5 )*(E*F yw *t f /t w ) 1/2 = 0.75*0.80* 6[mm] 2 *(1 + 3*(7[mm]/257.2[mm])*(6[mm]/8.4[mm]) 1.5 )*(205[KN/mm2]*0.275[KN/mm2]*8.4[mm]/ 6[mm]) 1/2 = 201.35[KN] Eq. J10-4 Support TOP FLANGE Flexural yielding [KN*m] 27.83 0.00 1 - D1 0.00 DG4 Eq. 3.20, Sec. 2.2.3, DG4 Eq. 3.21 c = p f0 + p fi + t bf = 38.099999[mm] + 40[mm] + 8.4[mm] = 86.499999[mm] DG4 Table 3.4, AISC 358-05 Table 6.5 s = 0.5*(b p *g) 1/2 = 0.5*(101.6[mm]*65[mm]) 1/2 = 40.632499[mm] DG16 Table 3-2 Y c = b cf *(h 1 /s) + 4/g*(h 1 *s) = 101.6[mm]*(458.8[mm]/40.632499[mm]) + 4/65[mm]*(458.8[mm]* 40.632499[mm]) = 2294.42[mm] DG16 Table 3-2 M n = F yc *Y c *t 2 cf = 0.275[KN/mm2]*2294.42[mm]*7[mm] 2 = 30.917356[KN*m] DG4 Eq. 3.20, Sec. 2.2.3 M n = *M n = 0.9*30.917356[KN*m] = 27.825621[KN*m] DG4 Eq. 3.21 Support bolt bearing [KN] 209.16 0.00 1 - D1 0.00 Eq. J3-6 L c-end = max(0.0, L e - d h /2) = max(0.0, 1E303[mm] - 21.5875[mm]/2) = 1E303[mm] Sec. J4.10 L c-spa = max(0.0, s - d h ) = max(0.0, 0[mm] - 21.5875[mm]) = 0[mm] Sec. J4.10 R n = *(min(k 1 *L c-end, k 2 *d) + min(k 1 *L c-spa, k 2 *d)*(n - 1))*t p *F u * n c = 0.75*(min(1.2*1E303[mm], 2.4*20[mm]) + min(1.2*0[mm], 2.4*20[mm])*(1-1))*7[mm]*0.415[KN/ mm2]*2 = 209.16[KN] Eq. J3-6 BOTTOM FLANGE Flexural yielding [KN*m] 37.67 420.00 1 - D1 11.15 DG4 Eq. 3.20, Sec. 2.2.3, DG4 Eq. 3.21 c = p f0 + p fi + t bf = 38.099999[mm] + 40[mm] + 7.826238[mm] = 85.926237[mm] DG4 Table 3.4, AISC 358-05 Table 6.5 s = 0.5*(b p *g) 1/2 = 0.5*(101.6[mm]*65[mm]) 1/2 = 40.632499[mm] DG16 Table 3-2 Y c = b cf /2*((1/s)*(h 1 + h 2 )) + 2/g*(h 1 *(s + 0.75*p b ) + h 2 *(s + 0.25*p b )) + g/ 2 = 101.6[mm]/2*((1/40.632499[mm])*(459.37[mm] + 389.37[mm])) + 2/65[mm]*(459.37[mm]*(40.632499[mm] + 0.75*70[mm]) + 389.37[mm]*(40.632499[mm] + 0.25*70[mm])) + 65[mm]/2 = 3106.49[mm] DG16 Table 3-3 M n = F yc *Y c *t 2 cf = 0.275[KN/mm2]*3106.49[mm]*7[mm] 2 = 41.859934[KN*m] DG4 Eq. 3.20, Sec. 2.2.3 M n = *M n = 0.9*41.859934[KN*m] = 37.673941[KN*m] DG4 Eq. 3.21 Support bolt bearing [KN] 418.32 280.00 1 - D1 0.67 Eq. J3-6 L c-end = max(0.0, L e - d h /2) = max(0.0, 70[mm] - 21.5875[mm]/2) = 59.20625[mm] Sec. J4.10 L c-spa = max(0.0, s - d h ) = max(0.0, 70[mm] - 21.5875[mm]) = 48.4125[mm] Sec. J4.10 R n = *(min(k 1 *L c-end, k 2 *d) + min(k 1 *L c-spa, k 2 *d)*(n - 1))*t p *F u * n c = 0.75*(min(1.2*59.20625[mm], 2.4*20[mm]) + min(1.2*48.4125[mm], 2.4*20[mm])*(2-1))*7[mm]* 0.415[KN/mm2]*2 = 418.32[KN] Eq. J3-6 Panel web shear [KN] 262.78 841.54 1 - D1 3.20 Sec. J10-6, Eq. J10-9 P c = *F y *A = 1*0.275[KN/mm2]*3160[mm2] = 869[KN] Sec. J10-6 IsPanelZoneDeformationConsidered = IsPanelZoneDeformationConsidered = False Sec. J10-6 P r <=0.4*P c 0[KN]<=0.4*869[KN] True R n = *0.60*F y *d c *t w = 0.9*0.60*0.275[KN/mm2]*305.1[mm]*5.8[mm] = 262.78[KN] Eq. J10-9

Local web yielding [KN] 216.92 841.54 1 - D1 3.88 DG4 eq. 3.24 IsBeamReaction False N = N = 8.4[mm] Sec. J10-2 IsMemberEnd False R n = *1*(6*k + N + 2*t p )*F yw *t w = 1*1*(6*14.6[mm] + 8.4[mm] + 2*20[mm])*0.275[KN/ mm2]*5.8[mm] = 216.92[KN] DG4 eq. 3.24 Top web bearing [KN] 176.86 841.54 1 - D1 4.76 Eq. J10-4 IsBeamReaction False N = N = 8.4[mm] Sec. J10-2 R n = *0.80*t 2 w *(1 + 3*(N/d)*(t w /t f ) 1.5 )*(E*F yw *t f /t w ) 1/2 = 0.75*0.80* 5.8[mm] 2 *(1 + 3*(8.4[mm]/305.1[mm])*(5.8[mm]/7[mm]) 1.5 )*(205[KN/mm2]*0.275[KN/mm2]*7[mm]/ 5.8[mm]) 1/2 = 176.86[KN] Eq. J10-4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Critical strength ratio 11.15 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- NOTATION A: Column cross-sectional area A b: Nominal bolt area A g: Gross area A w: Effective area of the weld b cf: Width of column flange b fb: Beam flange breadth b p: Plate width N: Bearing length C 2: Edge distance increment c: Vertical bolt spacing d: Nominal bolt diameter d bmax: Maximum bolt diameter d h: Nominal hole dimension d: Beam depth d c: Column depth D: Number of sixteenths of an inch in the weld size E: Elastic modulus F cr: Critical stress, flexural stress buckling F e: Elastic critical buckling stress F EXX: Electrode classification number F nt: Nominal tensile stress F nv: Nominal shear stress F u: Specified minimum tensile strength F w: Nominal strength of the weld metal per unit area F y: Specified minimum yield stress F yc: Specified minimum yield stress of column material F yf: Specified minimum yield stress of flange F yp: Specified minimum yield stress of plate F yw: Specified minimum yield stress of web g: Transversal gage between bolts g max: Maximum bolt gage g min: Minimum bolt gage IsBeamReaction: Is beam reaction IsMemberEnd: Is member end IsPanelZoneDeformationConsidered: Is panel zone deformation considered on frame stability K: Effective length factor k 1: Bearing factor k 1c: Distance from column web centerline to flange toe of fillet k 2: Bearing factor k: Distance from outer face of flange to the web toe of fillet k: Outside corner radius L: Length L c-end: Clear distance L e: Edge distance L emax: Maximum edge distance

L emin: Minimum edge distance L p: Plate length L: Length of weld LoadAngleFactor: Load angle factor M n: Nominal moment M np: No prying moment M pl: End plate or column flange flexural strength e dmin: Minimum edge distance n: Bolts rows number N: Bearing length n c: Number of bolt columns p b: Pitch between the inner and the outer row of bolts P c: Available axial compressive strength p f0: Distance from the inside of a beam tension flange to the nearest outside bolt row p fi: Distance from the inside of a beam tension flange to the nearest inside bolt row p fmin: Minimum distance from the inside of a beam tension flange to the nearest inside bolt row P r: Required axial stress P t: Bolt tensile strength : Design factors b: Design factor for bending M n: P n: R n: R n: R w: Design or allowable strength Design or allowable strength Design or allowable strength Design or allowable strength per unit length Fillet weld capacity per unit length R wl: Longitudinal fillet welds capacity Q: Prying action coefficient r: Radius of gyration s: Distance from the most inside or outside tension bolt row to the edge of a yield line s min: Minimum spacing s: Longitudinal bolt spacing L c-spa: Distance between adjacent holes edges t p: Thickness of the connected material T b: Minimum fastener pretension t bf: Thickness of the flange t cf: Thickness of the column flange t f: Thickness of the loaded flange t p: Plate thickness t w: Web thickness t wb: Thickness of beam web : Load angle w min: Minimum weld size required w: Weld size Y c: Column yield line mechanism parameter Y p: Yield line mechanism parameter p f: Distance from the bolt centerline adjacent the beam tension flange to the near face of the beam tension flange h 1: Distance from the compression side of the beam to the farthest inner load-carrying bolt line h 2: Distance from the compression side of the beam to the second farthest inner load-carrying bolt line d 1: Distance from the center of the beam compression flange to the farthest inner load-carrying bolt centerline d 2: Distance from the center of the beam compression flange to the second farthest inner load-carrying bolt centerline r: Load factor to limit connection rotation at ultimate moment to 10% of simple span rotation IsFlushConnection: Is flush connection d n: Sum of all distances from centerline of compression flange to the nth bolt row Q maxi: Maximum possible prying force for interior bolts w': Width of end-plate per bolt minus the bolt hole diameter a i: Distance from the interior bolt centerline to the prying force F i': Flange force per bolt at the thin plate limit when calculating Qmaxi for end-plate configurations with large inner pitch distances M q: Connection strength for the limit state of bolt fracture with prying action ThinPlateYieldingApply: Thin plate behavior controlled by end-plate yielding apply ThickPlateSmallerBoltsBehaviorApply: Thick plate behavior controled by bolt rupturwe without prying action apply t preq: Required plate thickness discr: Discriminant under the root sign for the calculation of Qmaxi, Qmaxo M np: Moment strength of the plate for the limit state of flexural yielding

bmpl: M q: Moment strength of the bolt group for the limit state of bolt rupture without prying action Moment strength of the bolt group for the limit state of bolt rupture with prying action