Circuit-QED-enhanced magnetic resonance

Similar documents
Magnetic Resonance at the quantum limit and beyond

Electrical quantum engineering with superconducting circuits

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Towards quantum simulator based on nuclear spins at room temperature

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

Optical pumping and the Zeeman Effect

Electrical quantum engineering with superconducting circuits

Electrical Quantum Engineering with Superconducting Circuits

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

arxiv: v1 [quant-ph] 24 Jul 2015

Electron spin coherence exceeding seconds in high-purity silicon

Elastic light scattering

PHL424: Nuclear fusion

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR)

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Last Name _Piatoles_ Given Name Americo ID Number

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier

Dynamical Casimir effect in superconducting circuits

Quantum Computation with Neutral Atoms Lectures 14-15

Lecture 2: Double quantum dots

Magnetic Resonance in Quantum Information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Experimental Quantum Computing: A technology overview

Circuit QED with electrons on helium:

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Axion Detection With NMR

Controlling spin relaxation with a cavity

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Quantum Optics with Electrical Circuits: Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED

Photons in the universe. Indian Institute of Technology Ropar

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space.

NMR: Formalism & Techniques

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

Electron spin qubits in P donors in Silicon

Cristaux dopés terres rares pour les mémoires quantiques

Metastable states in an RF driven Josephson oscillator

13/02/2017. Overview. Magnetism. Electron paramagnetic resonance (EPR) Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation CH916

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

10.5 Circuit quantum electrodynamics

Coherent oscillations in a charge qubit

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Cooperative Phenomena

Quantum manipulation of NV centers in diamond

Magnetic Resonance in Quantum

Quantum Microwave Photonics:

Electron spins in nonmagnetic semiconductors

Charge carrier density in metals and semiconductors

The Bose Einstein quantum statistics

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Exploring parasitic Material Defects with superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University

Overview. Magnetism. Electron paramagnetic resonance (EPR) 28/02/2014. Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916

Chapter 8 Magnetic Resonance

9 Atomic Coherence in Three-Level Atoms

Acceleration to higher energies

(1) Correspondence of the density matrix to traditional method

Quantum Optics in Wavelength Scale Structures

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Figure 1 Relaxation processes within an excited state or the ground state.

Parity-Protected Josephson Qubits

Resonantly Enhanced Microwave Photonics

The SQUID-tunable resonator as a microwave parametric oscillator

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Supplementary Information

Superconducting Qubits Lecture 4

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Superconducting Flux Qubits: The state of the field

Quantum magnonics with a macroscopic ferromagnetic sphere

Driving Qubit Transitions in J-C Hamiltonian

Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following.

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Gradient expansion formalism for generic spin torques

Entangled Photon Generation via Biexciton in a Thin Film

OBE solutions in the rotating frame

10.5 Circuit quantum electrodynamics

High Field EPR at the National High. Johan van Tol. Magnetic Field Lab

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich,

Superconducting Resonators and Their Applications in Quantum Engineering

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Titelmasterformat durch Klicken bearbeiten

INTRIQ. Coherent Manipulation of single nuclear spin

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

MIT Department of Nuclear Science & Engineering

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Neutron spin filter based on dynamically polarized protons using photo-excited triplet states

Mechanical Quantum Systems

High performance THz quantum cascade lasers

From trapped ions to macroscopic quantum systems

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

Transcription:

Circuit-QED-enhanced magnetic resonance P. Bertet, Quantronics Group, CEA Saclay CEA Saclay S. Probst A. Bienfait V. Ranjan B. Albanese J.F. DaSilva-Barbosa D. Vion D. Esteve R. Heeres PB UCL London J.J. Pla C.-C. Lo J.J.L. Morton Aarhus University A. Holm-Kiilerich B. Julsgaard K. Moelmer Chinese University Hong-Kong G. Zhang R. Liu

Nanoscale magnetic resonance Optical detection Nature 363, 244 (1993) Nat. Com. 5, 4870 (2014) Nat. Nano. 9, 279 (2014) Scanning probe Science 350, 417 (2015) Nature 430, 329 (2004) Phys. Rev. Lett. 62, 2531 (1989) Electrical detection Rev. Sci. Instr. 83, 043907 (2012) Nature 467, 687 (2010) Fantastically useful but Low sensitivity Macroscopic samples Circuit QED for electron spin resonance detection 1) Principle 2) Applications : - Few-nuclear spin detection - Novel e spin hyperpolarization scheme

Excite spins Echo emission Conventional Pulsed Inductive Detection Electron Spin Resonance (ESR) B 0 τ τ π/2 π echo time π π/2

Circuit QED-enhanced ESR 1. Low Temperature Maximum spin Polarization No thermal noise 0.06% 7GHz 100% 20 mk 293 K 2. Superconducting Micro-Resonators Large spin-mwphoton coupling g Large quality factor Q Spins 4 cm 3. Quantum limited detection chain Cc Input Noiseless amplification by superconducting Josephson Parametric Amplifier (JPA) Ck Lk Ck DC bias + Pump squid array X. Zhou et al., Phys. Rev. B 89, 214517 (2014)

Circuit QED-enhanced ESR : setup 4K Q ~ 10 5 80 cm 10 cm 10mK

Circuit QED-enhanced ESR : setup ω 0 Signal Input Signal Output 2ω 0 JPA pump 4K 300K 80 cm 50dB 20dB 40dB +20dB 4K 10mK B xy 3D Cavity Josephson Parametric Amplifier 10mK Planar Resonator

Bismuth donors in silicon e - 209 Bi Bi +

Bismuth donors in silicon e - 209 Bi e - Bi + HH ħ = AAII SS + BB 00 ( γγ ee SS γγ nn II) HYPERFINE ZEEMAN EFFECT Electronic spin = 1/2 20 electro-nuclear states Nuclear spin I=9/2 Large hyperfine coupling AA = 1.4754GHz 2ππ

Bismuth donors in silicon At low-field B 0 =0 B 0 0 F = 5 m F 5 5 A/2π 7.37 GHz F = 4 m F -5 m F 4 m F -4 209 Bi HH ħ = AAII SS + BB 00 ( γγ ee SS γγ nn II) HYPERFINE ZEEMAN EFFECT Nuclear spin I=9/2 Electronic spin S=1/2 Large hyperfine coupling AA 2ππ = 1.48 GHz RE George et al., Phys Rev Lett 105 067601 (2010); GW Morley et al. Nature Materials 9 725 (2010)

Bismuth donors in silicon 10 allowed ESR-like transitions @ low B 0 28 Si Magnetic field B 0 (mt) Implanted Bismuth mf = 4 mf = 5, @~5 mt

Spin relaxation by spontaneous emission through the cavity ωω 0, QQ gg γγ PP = 4QQgg2 ωω 0 1 γγ PP 1 + 4QQ 2 ωω ss ωω 0 ωω 0 2 11 TT 11 = γγ PP + ΓΓ NNNN At resonance, γγ PP = 4QQgg 2 /ωω 0 Direct experimental determination of the spin-photon coupling constant gg 2ππ = 60 ± 10Hz A. Bienfait et al., Nature (2016)

Reducing the magnetic mode volume to enhance the coupling L=1mm w=5µm VV 20pppp 100 nm 5 µm L=0.1mm w=0.5µm VV 200ffff L=10µm w=0.1µm VV ffll 1 mm 100 nm 20 µm

Reducing the magnetic mode volume to enhance the coupling L=1mm w=5µm VV 20pppp TT 1 = 0.4s gg 2ππ = 50Hz 2000spin/ Hz L=0.1mm w=0.5µm VV 200ffff TT 1 = 20ms gg 2ππ = 400Hz 65spin/ Hz L=10µm w=0.1µm VV ffll TT 1 = 1.3ms gg 2ππ = 3kHz 10spin/ Hz

Effect on the spin linewidth and coherence time L=1mm w=5µm VV 20pppp Γ 3MHz TT 2 = 9ms L=0.1mm w=0.5µm VV 200ffff Γ 30MHz TT 2 = 2ms L=10µm w=0.1µm VV ffll Γ 100MHz? TT 2 = 0.9ms

HH ħ = AAII SS + BB 00 ( γγ ee SS γγ nn II) AA(EE, ee) : spin line broadening if inhomogeneous electric or strain fields Broadening mechanisms Strain induced by the aluminum wire on the underlying silicon substrate due to differential thermal contraction during cooldown B 0 At low strain, AA = KK/3 (ee xxxx + ee yyyy +ee zzzz ) with KK = 19GHz J. Mansir et al., arxiv (2017)

Understanding lineshapes Strain profile Hyperfine shift Simulated spectrum w/o adjustable parameter (J. Pla) J. Pla et al., Phys. Rev Appl. (2018) Strain broadening : quantitative understanding for 5µm-wide wires.but only qualitative for narrower wires. Extra shifts due to stray electric fields? Observed reduction in T 2 for increased spin-resonator coupling??

Temperature dependence of T2 R2 R2 R1 R1 Unexplained temperature dependence of T2. Similar data obtained by H. Huebl s group (TUMunchen) Non-trivial resonator-induced decoherence mechanism?

Accessing the electron spin magnetic environment EPR spectroscopy gives acess to electron spin environment using pulse sequences such as ENDOR, ELDOR, DEER, ESEEM, Can we do this with quantum-limited spectrometer? Davies ENDOR with superc. µresonator Sigillito et al., Nature Nano (2017)

Electron Spin Echo Envelope Modulation (ESEEM) II Electron spin S=1/2 Nuclear spin I=1/2 BB 0 SS θθ rr Dipolar Hyperfine Constant TT = μμ 0 gg ee gg nn ββ ee ββ nn 4ππ hrr 3 AA = TT(3 cos 2 θθ 1) BB = 3TT sin θθ cos θθ Dipolar hyperfine Hamiltonian HH = ωω ee SS zz + ωω nn II zz + AA SS zz II zz + BB SS zz II xx Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

Electron Spin Echo Envelope Modulation (ESEEM) II Electron spin S=1/2 Nuclear spin I=1/2 BB 0 SS θθ rr bb + Dipolar Hyperfine Constant TT = μμ 0 gg ee gg nn ββ ee ββ nn 4ππ hrr 3 AA = TT(3 cos 2 θθ 1) BB = 3TT sin θθ cos θθ Dipolar hyperfine Hamiltonian HH = ωω ee SS zz + ωω nn II zz + AA SS zz II zz + BB SS zz II xx Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

Electron Spin Echo Envelope Modulation (ESEEM) ωω nn II Electron spin S=1/2 Nuclear spin I=1/2 BB 0 SS θθ rr bb Dipolar Hyperfine Constant TT = μμ 0 gg ee gg nn ββ ee ββ nn 4ππ hrr 3 AA = TT(3 cos 2 θθ 1) BB = 3TT sin θθ cos θθ Dipolar hyperfine Hamiltonian HH = ωω ee SS zz + ωω nn II zz + AA SS zz II zz + BB SS zz II xx ττ 2ππ/ωω nn ππ/2 ττ ππ ττ Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

Electron Spin Echo Envelope Modulation (ESEEM) ωω nn II Electron spin S=1/2 Nuclear spin I=1/2 BB 0 SS θθ rr bb Dipolar Hyperfine Constant TT = μμ 0 gg ee gg nn ββ ee ββ nn 4ππ hrr 3 AA = TT(3 cos 2 θθ 1) BB = 3TT sin θθ cos θθ Dipolar hyperfine Hamiltonian HH = ωω ee SS zz + ωω nn II zz + AA SS zz II zz + BB SS zz II xx ππ/2 ττ ττ = ππ/ωω nn ππ Suppressed echo ττ Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

Electron Spin Echo Envelope Modulation (ESEEM) ωω nn II Electron spin S=1/2 Nuclear spin I=1/2 BB 0 SS θθ rr bb Dipolar Hyperfine Constant TT = μμ 0 gg ee gg nn ββ ee ββ nn 4ππ hrr 3 AA = TT(3 cos 2 θθ 1) BB = 3TT sin θθ cos θθ Dipolar hyperfine Hamiltonian HH = ωω ee SS zz + ωω nn II zz + AA SS zz II zz + BB SS zz II xx ππ/2 ττ ττ = 2ππ/ωω nn ππ Echo recovery ττ Modulation of spin-echo envelope at ωω nn Modulation amplitude BB θθ ωω nn 2 Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

Detecting residual 29 Si nuclear spins through ESEEM 29 Si 0.05 % 29 Si 29 Si x τ y τ ~7nm Bi Typical TT 2ππ 1kkHHHH Need to measure at very low BB 0

Sensing 29 Si nuclear spins through ESEEM Oscillation 8.5MHz/T corresponds to 29 Si gyromagnetic ratio Independent confirmation of 29 Si concentration nominal Signal comes from 100 Bi donor spins each coupled to 10 nuclear spins S. Probst, G. Zhang et al., in preparation

Beyond T2 limitation : 5-pulse ESEEM BB 0 = 0.1mT S. Probst, G. Zhang et al., in preparation

Circuit-QED-enhanced electron spin hyperpolarization 7GHz 20mK PP = NN NN NN + NN = tanh ħωω ss 2kk BB TT Polarization PP 7GHz 900mK kk BB TT/ħωω ss How to polarize spins beyond the Boltzmann distribution at the sample temperature T?

Hyperpolarization techniques Optical pumping For electron spins Ex: NV centers in diamond Spin-dependent tunneling Elzerman et al. Nature (2004) Pla et al., Nature (2010)

Hyperpolarization techniques Optical pumping For electron spins Ex: NV centers in diamond For nuclear spins Dynamical Nuclear Polarization Electrons Nuclei ħω s PP nn PP ee ħω I Spin-dependent tunneling MW drive at ωω ss ωω II PP nn PP ee Elzerman et al. Nature (2004) Pla et al., Nature (2010) Interest for a more general hyperpolarization scheme for electron spins

Hyperpolarization via radiative cooling 800 mk ωω ss ωs 2ππ = 7.4 GGGGGG

Hyperpolarization via radiative cooling 800 mk ħω s ωω ss ω 0 2ππ = 7.4 GGGGGG 20 mk Requirements : Spins should relax radiatively (i.e. Purcell regime) Minimize losses between cold load and spins PP cccccccc PP hoooo = 2nn 800mmmm + 1 2nn 20mmmm + 1 = 4.5 Enabled by Circuit QED

Hyperpolarization by radiative cooling : implementation Bismuth donors in natural Si SignaI Input ω 0 TWPA pump Signal Output ω 0 300 K 10dB HEMT 40dB 4K 20dB Hot 900 mk B 0 Nb Resonator -20dB dir.cpler Electromechanical switch 3D Cavity Cold 20 db Josephson Travelling Wave Parametric Amplifier Macklin et al., Science (2015) 20 mk

Hyperpolarization by radiative cooling : results HOT LOAD COLD LOAD ππ/2 ττ ππ ττ 2ττ(μμμμ) Strong ESEEM (natural abundance 29 Si) Polarization increase by factor 1.9 2.1 when cold load connected. Less than expected due to unwanted losses

Hyperpolarization by radiative cooling : results Spin relaxation time reduced by the same factor as polarization as expected

Conclusion Circuit-QED-based EPR spectroscopy enables unprecedented sensitivity for inductive detection Demonstrated spin sensitivity of 10spin/ Hz, entering the few-spin regime Bienfait et al., Nature Nano (2016) Probst et al., APL (2017) Response to strain and electric field, resonator-induced decoherence, need to be better understood Mansir et al., to appear in PRL (2018) Pla et al., PRAppl (2018) Spectrometer can be used to probe electron spin environment using standard pulse EPR techniques Probst et al., in preparation (2018) The Purcell regime offers novel schemes for electron spin hyperpolarization

Acknowledgements B. Albanese J.F. Barbosa DaSilva E. Albertinale Quantronics group, CEA Saclay Present members V. Ranjan D. Vion D. Esteve Former members Y. Kubo C. Grezes A. Bienfait P. Campagne-Ibarcq P. Jamonneau M. Stern X. Zhou S. Probst R. Heeres Collaborations J. Morton (UCL London) J. Pla (UNSW) K. Moelmer (Aarhus) R. Liu (HongKong) Y.-M. Niquet (CEA Grenoble) A. Blais (U. Sherbrooke) M. Pioro-Ladrière (U. Sherbrooke) D. Sugny (Univ Bourgogne) V. Jacques (Univ Montpellier) J. Isoya (Tsukuba) T. Teraji (NIMS) Y. Kubo (OIST) P. Goldner (ESPCI)