Engineering gapplications. Applications of Laplace Transform

Similar documents
Introduction to Laplace Transform Techniques in Circuit Analysis

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Modeling in the Frequency Domain

Linear System Fundamentals

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Digital Control System

ECE Linear Circuit Analysis II

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

ME 375 EXAM #1 Tuesday February 21, 2006

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

Question 1 Equivalent Circuits

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Module 4: Time Response of discrete time systems Lecture Note 1

FUNDAMENTALS OF POWER SYSTEMS

1. /25 2. /30 3. /25 4. /20 Total /100

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

ME 375 FINAL EXAM Wednesday, May 6, 2009

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

The Laplace Transform

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

MAE140 Linear Circuits Fall 2012 Final, December 13th

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

EE 4343/ Control System Design Project

Properties of Z-transform Transform 1 Linearity a

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

online learning Unit Workbook 4 RLC Transients

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Laplace Transformation

FRTN10 Exercise 3. Specifications and Disturbance Models

R L R L L sl C L 1 sc

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems

( ) ( ) ω = X x t e dt

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Chapter 13. Root Locus Introduction

EE Control Systems LECTURE 6

Equivalent POG block schemes

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

MATHEMATICAL MODELS OF PHYSICAL SYSTEMS

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

Reference:W:\Lib\MathCAD\Default\defaults.mcd

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Lecture 12 - Non-isolated DC-DC Buck Converter

5.5 Application of Frequency Response: Signal Filters

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

Design of Digital Filters

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Function and Impulse Response

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Reduction of Multiple Subsystems

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Lecture 2: The z-transform

Differential Equations and Lumped Element Circuits

DYNAMIC MODELS FOR CONTROLLER DESIGN

MM1: Basic Concept (I): System and its Variables

MODERN CONTROL SYSTEMS

Design By Emulation (Indirect Method)

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Roadmap for Discrete-Time Signal Processing

The Laplace Transform , Haynes Miller and Jeremy Orloff

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu

Midterm Test Nov 10, 2010 Student Number:

Solving a RLC Circuit using Convolution with DERIVE for Windows

55:041 Electronic Circuits

Sampling and the Discrete Fourier Transform

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

EECE 301 Signals & Systems Prof. Mark Fowler

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

March 18, 2014 Academic Year 2013/14

EXAM 4 -A2 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley

System models. We look at LTI systems for the time being Time domain models

Analysis of Stability &

Exercises for lectures 20 Digital Control

Massachusetts Institute of Technology Dynamics and Control II

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Digital Control System

Feedback Control Systems (FCS)

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

S.E. Sem. III [EXTC] Circuits and Transmission Lines

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

Initial conditions. Necessity and advantages: Initial conditions assist

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Chapter 4 Interconnection of LTI Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin

Transcription:

Differential Equation and Engineering gapplication ATH 220 Application of Laplace Tranform

Introduction to Laplace Tranform /3 For any function ft, it Laplace Tranform i given a: F t e f t dt 0 ft i aid to be in time-domain, where the independent variable, time t i a real quantity F [Laplace Tranform of ft] i aid to be in - domain, where independent variable, ia complex quantity

Introduction to Laplace Tranform 2/3 2 Laplace Tranform i a mathematical tool, which help in analyzing the ytem of interet. It take u from Time-Domain decription of ytem repreented by Differential Equation to a -Domain decription repreented by algebraic equation in variable. It i relatively l eay to olve algebraic equation, rather than the differential equation.

Introduction to Laplace Tranform 3/3 4 Solution of algebraic equation in, with zero initial iti condition, give Tranfer Function of fthe ytem. Tranfer Function Ratio of the Laplace Tranform of the output to the Laplace Tranform of input, when the initial condition are zero. Once we know the tranfer function of a ytem, we can eaily evaluate the repone of the ytem for any input ignal. The root of denominator of the tranfer function called a Pole of the ytem determine the tability of ytem. Sytem i STABLE if all pole have ve real part.

Propertie of Laplace Tranform 5

Propertie of Laplace Tranform 6

Some Ueful Laplace Tranform Pair 7

Application of Laplace Tranform to Differential Equation 8 Conider t order differential equation: y ' t ay t x t; y0 Taking Laplace Tranform of both ide, thi timedomain equation can be written in -domain a [ Y y0] a[ Y ] X Y X y0 a a Forced Repone Natural Repone

Application of Laplace Tranform to Diff ti l E ti 9 Differential Equation The repone of ytem to the forcing function alone i called forced repone: t y X Y f f t y X a Y f f The repone of ytem due to the initial condition of ytem only i called natural repone: 0 Y 0 t y y a Y n n The total repone of the ytem: The total repone of the ytem: t y t y t y n f

Application of Laplace Tranform to Differential Equation The tranfer function of the ytem i defined a: Tranfer Function H INPUT force, heat, where Y X OUTPUTdiplacement, temperature, N D IC I.C zero N and D are polynomial in. a The root of N are called ZERO of ytem. The root of D are called POLE of the ytem. 0

Application of Laplace Tranform to Differential Equation Tranfer Function Analyi: Repone of Sytem: Once tranfer function H of the ytem i known to u, the repone of ytem for any input can be calculated a: OUTPUT Y Tranfer Function H X, INPUT and y t Repone { Y } Stability of Sytem: The tability of the ytem can be checked from the pole of H, i.e., the root of the denominator polynomial D, a Sytem i STABLE if all pole have ve real part. L

Activity: Find the Laplace tranformation of the following o equation: 2 dx dx m B kx dt 2 dt f t 2What are the Force and the Natural repone of the ytem 3Find Tranfer Function

Activity: For the following TF, find zero and the tability of the ytem: H 2 5 6 2Find the correponding DE?

-Domain Analyi in ATLAB 4 Tranfer Function HRepreentation Uing ATLAB: H N 2 D 2 2 0 num[no, no2,, ] den[no, no2,, ] Jut name ytfnum,den Tranfer Function Generator Command

>> % Coefficient of N >> num[ 2]; >> % Coefficient of D >> den[ 2 0]; >> % Tranfer Function H of ytem >> ytfnum,den; 2 2 2 0 >> % Type y and check the reutl diplayed >>y Tranfer function: 2 -------------- OUTPUT ^2 2 0

Repone of Sytem Zero Initial Condition Impule Load Find H by defining: num and den uing: tfnum,den impuley,time

Impule Command compute the impule repone of a function Laplace Function [f,t] impuley,t; where t ti:dt:tf Time Example:Find impule repone of the following function for 0<t<30 : N 2 H 2 D 2 0

N 2 H 2 D 2 0 >> num[ 2]; % Coefficient of N >> den[ 2 0]; % Coefficient of D >> ytfnum,den; % Sytem Tran.Func. H >> t0:0.:30; % Time vector >> [h,t] impuley,t; >> plott,h, grid 8 u t

2Repone of Sytem Zero Initial Condition Sine or Square or Pule Load Find H by defining num and den uing: tfnum,den Generate ignal type uing: [x,t]genig type,period,duration,tep Solve ytem by: Solve ytem by: limy,x,time

20 -Domain Analyi in ATLAB Generating Signal: The ATLAB command genig g i ued to generate time-domain analog ignal. [u,t] genig Type,tau,tf,t Generate Signal Type ine, quare, pule tau Period one cycle tf Duration total time t Time pacing tep u value of ignal t correponding time intant

-Domain Analyi in ATLAB 2 >> % Generate and Plot Sine wave of period 5 ec for a total time of 30 ec. Total Time >> [u,t] genig'ine',5,30,0.; >> plott,u, grid Type Period Step u t

22 if H i given and it requete to find y t for x t Tranfer Function known H INPUT available Y X OUTPUTDeired? I.C zero Generate the input ignal xt uing genig 2 Generate Tranfer Function ytfnum,den 3 Ue limy,x,t

Ex.:Find repone of the following function N 2 H 2 D 2 0 >> % Sytem Tranfer Function H >> num[,2]; den[,2,0]; >> ytfnum,den; >> [x,t] genig'ine',5,30,0.; >> lim y,x,t; 23 input output

Initial Condition are not zero Find H by defining: num and den uing: ytfnum,den Find tate pace by uing: [A,B,C,D]tf2num,den Generate ignal type uing: [x,t]genig type,period,duration,tep Solve ytem by: lima,b,c,d,x,time,ic

25 Repone of Sytem Non-zero Initial Condition: H i given and it i requeted to find y tfor x t Generate the input ignal xt Repreent the ytem in State- pace form uing tf2num,den lima,b,c,d,x,t,x0; where y i ytem decription i tate-pace and x0 i initial tate vector

>> % Sytem Tranfer Function H >> num[,2]; den[,2,0];, >> % Tranfer Function to State Space >> [A,B,C,D]tf2num,den; >> % Generate the input ignal xt >> [x,t] genig'ine',5,30,0.; >> lima,b,c,d,x,t,[0 5]; 26 output input

27 Application of Laplace Tranform. Thermal Sytem

Variable: Temperature: Ө [kelvin]] Heat flow rate, q [J/] 28 Element Law: Thermal Capacitance: & θ t [ qin t qout t ], C where C: thermal capacitance [J/K] Thermal Reitance: where R: thermal reitance of the path between the two bodie [K/J] q t [ θ t θ 2 t ], R θ perfect inulation R q θ 2

Example : 29 A thermal capacitance C, i encloed by inulation of reitance R. Heat i added at a rate q i t. The ambient temperature urrounding the exterior i Ө a. Find the ytem model in term of Өt, q i t, and Ө a.

Example : Differential Equation: 30 & θ t [ qin t qout t ], C where q t q t, in i q out t θ t θa. R Hence, θ i a C R & θ t θ t qi t θa. RC C RC & t q t θ t θ,

Example : -Domain Repreentation ti 3 Taking Laplace Tranform of the differential equation: qi θa θ θ 0 θ RC C RC q θ a θ θ 0 RC C RC i θ q C θa RC RC i θ 0 RC and θ t L qi θa θ 0 C RC RC { θ }

Example : Simulation Parameter 32 Simulate the thermal capacitance ytem for: C.0*0 3 J/K, R2.0*0-3 -K/J, Ө a 300 K, and q i t000 K. Aume Ө0Ө a 300 K.

Example : Function for ODE Solver 33 function dthetadt ThermalExt,theta R2e-3; Ce3; qi000; theta_a300; dthetadt[/r*c*theta/c*qi/r*c*theta_a];

Example : ATLAB Simulation ODE analyi qi θa θ θ 0 θ RC C RC q i θa θ θ 0 RC C RC >> clear all, clc >> t0:30; >> [t,theta_ode] ode45'thermalex',t,[300]; q C tranfer function Analyi θ θa RC θ 0 RC RC i 34 qi θa θ 0 C RC RC >> R2e-3; Ce3; qi000; >> theta_a300; theta_zero300; >> num [theta_zero,/c*qi/r*c*theta_a]; >> den [, /R*C, 0]; >> ytfnum,den; >> [theta_tf, t2]impuley, t; >> ubplot2,,, plott,theta_ode, title'ode Analyi' >> ubplot2,,2, plott2,theta_tf, tf, >> title'tranfer Function Analyi'

Example : ATLAB Simulation Reult 302 ODE Analyi 35 30 300 0 5 0 5 20 25 30 302 Tranfer Function Analyi 30 300 0 5 0 5 20 25 30

Example 2: 36 Conider the following thermal capacitance, C, of temperature Өt. It i aumed that the ytem i perfectly inulated except for the thermal reitance R and R2. Heat i added at a rate qit, and the ambient temperature i Өa.

37 Example 2: Diff ti l E ti Differential Equation: [ ], t q t q where t q t q C t out in θ& 2, t R t R t q t q t q where a a out i in θ θ θ θ, 2 2, 2 R R C t R R C t q C t Hence R R i θ a θ θ&. 2,, 2 2 R R C a C b b t aq t b t R R C R R C C i θ a θ θ& 2,, R R C C q a i

Example 2: -Domain Repreentation ti Taking Laplace Tranform of the differential equation: aqi bθa θ θ 0 bθ [ ] aqi bθa b θ θ 0 38 θ θ 0 [ aq ] i bθa [ b] and θ t L { θ }

Example 2: Simulation Parameter 39 Simulate the ytem for 5 ec. C.0*0 3 J/K, R2.0*0-3 -K/J, R2.5*0-3 -K/J, Ө a 300 K, and q i t000 K. Aume Ө0Ө a 300 K.

Example 2: Function for ODE Solver 40 function dthetadt ThermalEx2t,theta Ce3; R2e-3; R2.5e-3; a/c; b/c*/r/r2; qi000; theta_a300; dthetadt [-b*thetaa*qib*theta_a];

Example 2: ATLAB Simulation 4 clear all, clc t0:0.:5; ODE analyi [t,theta_ode] ode45'thermalex2',t,[300]; Tranfer function Analyi R2e-3; R2.5e-3; Ce3; qi000; a/c; b/c*/r/r2; theta_a300; theta_zero300; θ num [theta_zero,a*qib*theta_a]; den [,b,0]; ytfnum,den; [theta_tf, t2]impuley,t; a/c; b/c*/r/r2; θ 0 [ aqi b θa ] [ b] ubplot2,,, plott,theta ode, title'ode Analyi' ubplot2,,, plott,theta_ode, title ODE Analyi ubplot2,,2, plott2,theta_tf, title'tranfer Function Analyi'

Example 2: ATLAB Simulation Reult 30 ODE Analyi 42 300.5 300 0 2 3 4 5 30 Tranfer Function Analyi 300.5 300 0 2 3 4 5

43 Application of Laplace Tranform 2. echanical Sytem

Variable: 44 Diplacement x Velocity vdx/dt Acceleration adv/dt Element Law: a Newton econd law: d f mv dt d d f mv m v ma dt dt mx & x v a m f

Element Law: 45 Friction Friction reitance force: f B Δv B v 2 v f f v m B v 2 m 2 dahpot repreentation v 2 m 2 xxxxxxxx m v Oil film repreentation Stiffne Stiffne reitance force: B f kδx k x x 2 2 x m k x 2 m 2

Example 46 Conider the following model xt B K f a t, K00, B2 Obtain differential equation repreentation. Obtain -domain repreentation Simulate the ytem for following cae: CASE : Initial Condition are zero, and f a t0 CASE 2: Initial Condition are zero, and f a t 50 in2t i2t CASE 3: I.C. x[2.5; 2.5],and f a t 50 in2t

Example - Differential Equation B && x x& K x f a B K xt f a t 47 Kx Bx& && x f a

Example - -Domain Repreentation 48 Example Domain Repreentation B 0 0 2 2 K B x x B K B F X a & 2 2 K B K B 0 0 x x B F a f &., 2 2 K B X K B X n f

Example - CASE 49 Example CASE CASE : Initial Condition are zero, and f a t0 Initial condition are zero, and hence, we need to determine the forced repone due to the forcing function only. F t f a a 0 0 0 N F X a 2 2 D K B K B X

Example - Function for ODE Solver 50 function dzdt echext,z ; K00; B2; fa0; %fa50*in2*t; dzdt [ z2; -B/*z2-K/*z/*fa ];

Example CASE ATLAB Code 5 clear all, clc t0:0.005:20; % Simulation Time %ODE analyi [t,z_ode] ode45'echex',t,[0;0]; % tranfer function Analyi ; K00; B2; fa0; num [fa/]; den [ B/ K/ 0]; ytfnum,den; [x_tf, t2]impuley, t; X 2 0 B K ubplot2,,, plott,z_ode:,,title'ode Analyi' ubplot2,,2, plott2,x_tf, tf, title'tranfer Function Analyi'

Example CASE ATLAB Simulation Reult 52 0.2 ODE Analyi 0 0. 0.2 0. 0 0 5 0 5 20 Tranfer Function Analyi 0 0 5 0 5 20

Example - CASE 2 53 CASE 2: Initial Condition are zero, and f a t50 in2t Some inuoidal force i applied, and initial condition are zero, therefore, in order to perform -domain analyi, we proceed a follow: Generate the input ignal uing genig Determine the tranfer function for the ytem Simulate the ytem uing lim H X N B Fa D 2 IC 0 K

Example CASE 2 ATLAB Code clear all, clc 54 t0:0.005:20; % Simulation Time %ODE analyi [t,z_ode] ode45'echex',t,[0;0]; 2 B K % tranfer function Analyi % Parameter X ; K00; B2; % Generate the input ignal fat [fa,t] genig'ine',pi,20,0.005; fa50*fa; % Sytem Tranfer Function H num [/]; den [ B/ K/]; ytfnum,den; % Sytem Repone xlimy,fa,t; ubplot2,,, plott,z_ode:,, title'ode Analyi' ubplot2,,2, plott,x, title'tranfer Function Analyi'

Example CASE 2 ATLAB Simulation Reult 55 ODE Analyi 0-0 5 0 5 20 Tranfer Function Analyi 0-0 5 0 5 20

Example - CASE 3 56 CASE 3: Non-Zero Initial Condition and f a t50 in2t Some inuoidal force i applied, and initial condition are non-zero, therefore, in order to perform -domain analyi, we proceed a follow: Generate the input ignal uing genig Determine the tranfer function for the ytem Trnafrom the ytem fuction to tate-pacepace form Simulate the ytem uing lim, with give initial condition H X F N D B a 2 IC 0 [A,B,C,D] tf2num,den K

Example CASE 3 ATLAB Code clear all, clc t0:0 0:0.005:20; 005:20; % Simulation Time %ODE analyi [t,z_ode] ode45'echex',t,[2.5;2.5]; % tranfer function Analyi X N % Parameter H ; K00; B2; F D IC 0 % Generate the input ignal fat [fa,t] genig'ine',pi,20,0.005; fa50*fa; % tate pace ytem [A,B,C,D]tf2num,den B a 2 xlima,b,c,d,fa,t,[2.5;2.5]; ubplot2,,, plott,z_ode:,, title'ode Analyi' ubplot2,,2, plott,x, title'tranfer Function Analyi' 57 K

Example CASE 3 ATLAB Simulation Reult 4 ODE Analyi 58 2 0-2 0 5 0 5 20 4 2 0 Tranfer Function Analyi -2 0 5 0 5 20

59 Application of Laplace Tranform 3. Electrical Sytem

Variable: Voltage v volt Current i ampere 60 Element Law: Reitor Ohm law: i v R v Ri R reitance in ohm Open Circuit R infinite Short circuit it R zero

Element Law: 6 Capacitor v - i Curren through h capacitor i q Cv given a C capacitance in farad dq d Cv dv i C dt dt dt dv idt, C by integrating, the voltage acro capcitor i given a t v t v t 0 i λ dλ C t 0

Element Law: Inductor L - v i v L di dt which can be re - arrnaged a di vdt L which can be olved a t i t i t 0 v λ dλ L t 0 L inductance in henry 62

-Domain Circuit Analyi 63 RESISTOR v t Ri t R Tranforming thi equation, we get R V R I R R v t i t R R - R or I V R R R

-Domain Circuit Analyi 64 v C or CAPACITOR t v t i C C t 0 C ic λ dλ t t C 0 dv C t dt Tranforming thi equation, we get V v t C i t C C c o I C C v C t - C or I CV CV Cv t C C C 0

-Domain Circuit Analyi 65 INDUCTOR v L t L di i t L dt i L v L t - L or i L t i L t 0 v L λ dλ L Tranforming thi equation, we get or V t t 0 L L I L Li t0 i L t0 V L I L 0 L

66 Example For the circuit hown in the Figure, v i 0V, R 0,000000 Ω, C 0μF. vi R C v o t Uing Nodal analyi, find the mathematical model that repreent the circuit conidering the initial condition equal to zero and a time interval of 0 to 20 m. Ue atlab to find the numerical olution of the model. Solution: Uing Nodal Analyi: R v i v o dvo t C dt t v v t dvo i o dt CR CR vi v o R C v o t

Simulation Uing ODE Solver dvo dt t v v t o i o CR CR vi clear [t,v] ode45 ELEC_Ex',[0 0.5],[0]; plott,v:,, title The Output Voltage'; xlabel'time t'; ylabel Voltage V '; function dvdt ELEC_EXt,v Vi 0; R 0000; C 0e-6; dvdt [ V / C*R - v / C*R]; v o 67 R C v o t

Simulation Reult Uing ODE Solver 68 0 The Output Voltage 8 Voltag ge V 6 4 2 0 0. 0.2 0.3 0.4 0.5 0 time t

Example Analyi in -Domain 69 V o [ V ] i v C t 0 RC RC Voltage H v Tranfer Function RC V o V i RC

Example Analyi in -Domain 70 CASE : v i 0V, R 0,000 Ω, C 0μF Vct0 0 Capacitor i initially dicharged clear all, clc t0:0.005:; % Simulation Time % ODE analyi [t,v] ode45'elec_ex',t,[0]; % tranfer function Analyi R0e3; C0e-6; num2 [0/R*C]; den2 [ /R*C 0]; y2tfnum2,den2; V o RC 0 RC [vc, t3]impuley2, t; ubplot3,,, plott,v:,, title'tranfer Function Analyi' ubplot3,,2, plott3,vc,

Example Analyi in -Domain 7 CASE : v i 0V, R 0,000 Ω, C 0μF Vct0 0 Capacitor i initially dicharged V o RC 0 RC

Example Analyi in -Domain 72 CASE 2: v i 0 in2*pi*50*t t, R 0,000 Ω, C 0μF Vct0 0 Capacitor i initially dicharged clear all, clc t0:0.00:; % Simulation Time % ODE analyi [t,v] ode45'elec_ex',t,[0]; % tranfer function Analyi % Generate the input ignal tau/50; [vi,t2] genig'ine',tau,,0.00; vi0*vi; % Parameter R0e3; C0e-6; num2 [/R*C]; den2 [ /R*C]; y2tfnum2,den2; H v RC RC vclimy2,vi,t2;

Example Analyi in -Domain 73 CASE 2: v i 0 in2*pi*50*t t, R 0,000 Ω, C 0μF Vct0 0 Capacitor i initially dicharged H v RC RC