Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO*

Similar documents
Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

Reservoir Characterization using AVO and Seismic Inversion Techniques

A Petroleum Geologist's Guide to Seismic Reflection

OTC OTC PP. Abstract

Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at

Satish Singh* (IPG Paris, France, Tim Sears (British Gas, UK), Mark Roberts (IPG Paris, Summary. Introduction P - 92

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method

RC 1.3. SEG/Houston 2005 Annual Meeting 1307

Velocity Update Using High Resolution Tomography in Santos Basin, Brazil Lingli Hu and Jianhang Zhou, CGGVeritas

H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil

Th P7 02 A Method to Suppress Salt-related Converted Wave Using 3D Acoustic Modelling

Delineating a sandstone reservoir at Pikes Peak, Saskatchewan using 3C seismic data and well logs

J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU)

Shear wave statics in 3D-3C : An alternate approach

Summary. Introduction

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin

Pluto Model. Trevor Irons INTRODUCTION

The reason why acoustic and shear impedances inverted

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Pressure Prediction and Hazard Avoidance through Improved Seismic Imaging

Pre-stack (AVO) and post-stack inversion of the Hussar low frequency seismic data

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Improved image aids interpretation: A case history

3D beam prestack depth migration with examples from around the world

G002 An Integrated Regional Framework for Seismic Depth Imaging in the Deepwater Gulf of Mexico

Wavelet analysis identifies geology in seismic

Rock physics and AVO applications in gas hydrate exploration

Post-stack inversion of the Hussar low frequency seismic data

The elastic properties such as velocity, density, impedance,

Seismic modeling evaluation of fault illumination in the Woodford Shale Sumit Verma*, Onur Mutlu, Kurt J. Marfurt, The University of Oklahoma

Key Words: seismic method, fractured reservoir, Larderello field ABSTRACT

Predicting Gas Hydrates Using Prestack Seismic Data in Deepwater Gulf of Mexico (JIP Projects)

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

Seismic Response and Wave Group Characteristics of Reef Carbonate Formation of Karloff-Oxford Group in Asser Block

Imaging complex structure with crosswell seismic in Jianghan oil field

Estimating vertical and horizontal resistivity of the overburden and the reservoir for the Alvheim Boa field. Folke Engelmark* and Johan Mattsson, PGS

Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits in Sediments-Hosted Environment

Research Project Report

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

Plane-wave migration in tilted coordinates

23855 Rock Physics Constraints on Seismic Inversion

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study

IMAGING WITH REVERSE VERTICAL SEISMIC PROFILES USING A DOWNHOLE, HYDRAULIC, AXIAL VIBRATOR

Reservoir properties inversion from AVO attributes

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985)

Using high-density OBC seismic data to optimize the Andrew satellites development

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS

11301 Reservoir Analogues Characterization by Means of GPR

3D geologic modelling of channellized reservoirs: applications in seismic attribute facies classification

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Eighth Annual Convention & Exhibition, May 2014

3D Converted Wave Data Processing A case history

Lithology prediction and fluid discrimination in Block A6 offshore Myanmar

AVO is not an Achilles Heel but a valuable tool for successful exploration west of Shetland

Tim Carr - West Virginia University

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains

New Frontier Advanced Multiclient Data Offshore Uruguay. Advanced data interpretation to empower your decision making in the upcoming bid round

Principles of 3-D Seismic Interpretation and Applications

X040 Buried Sources and Receivers in a Karsted Desert Environment

Synthetic seismic modelling and imaging of an impact structure

Fred Mayer 1; Graham Cain 1; Carmen Dumitrescu 2; (1) Devon Canada; (2) Terra-IQ Ltd. Summary

27105 High Resolution Diffraction Imaging of Small Scale Fractures in Shale and Carbonate Reservoirs

We LHR5 03 Seismic Diffraction Response from Boreholes

Improved Interpretability via Dual-sensor Towed Streamer 3D Seismic - A Case Study from East China Sea

Summary. Seismic Field Example

Optimizing seismic repeatability at Ringhorne, Ringhorne East, Balder and Forseti with QC driven time-lapse processing

Finite difference elastic modeling of the topography and the weathering layer

Investigating fault shadows in a normally faulted geology

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion

Improving Resolution with Spectral Balancing- A Case study

Seismic Waves in Complex 3 D Structures, 26 (2016), (ISSN , online at

Information From Walk-Away VSP and Cross-Hole DataUsing Various Wave Modes: Tower Colliery, South Sydney Basin

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Comments on the Geophysics paper Multiparameter 11norm. waveform fitting: Interpretation of Gulf of Mexico reflection

Synthetic Seismic Modeling of Turbidite Outcrops

URTeC: Summary

Seismic interpretation of gas hydrate based on physical properties of sediments Summary Suitable gas hydrate occurrence environment Introduction

Envelope of Fracture Density

E014 4D Case Study at Ringhorne, Ringhorne East, Balder and Forseti - Integrating OBC with Streamer Data

SPE These in turn can be used to estimate mechanical properties.

Multiattributes and Seismic Interpretation of Offshore Exploratory Block in Bahrain A Case Study

Review of the Processing and Interpretation of Seismic data of C-24 field, Mumbai Offshore Basin- A case study

We G Elastic One-Return Boundary Element Method and Hybrid Elastic Thin-Slab Propagator

Geophysical model response in a shale gas

The Marrying of Petrophysics with Geophysics Results in a Powerful Tool for Independents Roger A. Young, eseis, Inc.

Cross-well seismic modelling for coal seam delineation

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough

Keywords. PMR, Reservoir Characterization, EEI, LR

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well

Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model

AVO Crossplotting II: Examining Vp/Vs Behavior

P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX

Transcription:

Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO* *This paper has been submitted to the EAGE for presentation at the June 2001 EAGE meeting. SUMMARY AUTHOR(S) D. STOUGHTON 1, J. STEFANI 2 and S. MICHELL 3 Address 1 BHP Petroleum, 1360 Post Oak Blvd, #500, Houston, Tx 77056 U.S.A. 2 Chevron Petroleum Technology Company, P.O. Box 6019, San Ramon, Ca 94583 U.S.A. 3 BP, P. O. Box 3092, Houston, Tx 77253 U.S.A. A full elastic 2D synthetic model has been generated by the SMAART* Joint Venture Consortium to simulate the primary signal and noise characteristics of sub-salt objectives associated with the deep-water environment of the Gulf of Mexico. A very detailed geologic model has been derived based on real exploration data and has served as input to a finite difference shot computation process. The data has been rigorously computed with many offsets and can be decimated to mimic shot geometries of long offset streamer data. This dataset has been primarily used for benchmarking multiple attenuation algorithms. It is now being released to the geophysical community for further research in de-multiple and other wavefield processing techniques. INTRODUCTION AND PURPOSE Many investigations have taken place for testing the quality of multiple attenuation algorithms. Most of these studies were conducted on either field data or very simple synthetics. Using field data for a study, it is often difficult to access the quality of the result because the "answer" is unknown. Simple models are very good for testing some algorithms, but these same algorithms may fail on more realistic data. A more detailed synthetic model is required to extend the objective testing of the algorithms. The SMAART* Joint Venture benchmarked several de-multiple approaches which have gained general acceptance and promise for commercial implementation on 2D and/or 3D data volumes.. Since removal or attenuation of multiple noise is paramount to improved sub-salt data, knowledge of the limitations and strengths of each technique would be helpful in the data processing. Therefore, a set of appropriate synthetic datasets were deemed necessary for testing various de-multiple processes and strategies. Constructing synthetic seismic models that replicate the type of primary reflection signal as well as the multiple noise was the primary impetus. In addition, the test dataset was decimated to a shot and receiver sampling similar to conventional streamer data. This paper describes the creation of a dataset that allows objective testing of multiple attenuation techniques. The 2D dataset, called Pluto 1.5, has been generated by the SMAART JV and has been used for extensive de-multiple algorithm testing. This isotropic elastic numerical model is now being released to the geophysical community for independent investigations. The dataset is appropriate for other wavefield studies as well, including depth imaging, amplitude versus offset/angle, and converted waves. *The current members of the Subsalt Multiple Attenuation And Reduction Technology (SMAART) JV consortium are: BHP Petroleum, BP, Texaco and Chevron.

DERIVATION OF GEOLOGIC MODEL The structural framework and stratigraphic fabric of the 2D model was designed from detailed evaluations of the Pluto Prospect, located approximately 45 miles offshore Louisiana in 870m (2850ft) of water. The main portion of the prospect includes Mississippi Canyon blocks 673, 674, 717 and 718. The prospect lies partially beneath an allochthonous salt canopy. The partnership of BP, BHP and Chevron (current SMAART JV members) tested the prospect in 1995 and 1996 with two straight hole wells, one outside of salt, the other penetrating approximately 1067m (3500ft) of salt. These wells reached depths up to 6,858m (22.5kft). Two associated sidetrack wells were also drilled resulting in moderate amounts of hydrocarbons being discovered. The 2D model replicates an approximate 32km (105kft) cross-sectional traverse over the greater prospect area in a NW-SE orientation. The depth of the model extends to 9.14km (30kft). BHP provided the gross structural framework of the model and included digitized curves for the seafloor, top and bottom of all salt bodies, various faults, and ten geological interfaces. These structural elements were derived from the interpretation of Chevron generated 3D pre-stack depth migrated data volumes along with the correlation of seismic via well log synthetic and VSP ties. Well log and check shot data from the wells were used for deriving the density, Vp, and Vs gradients for shale and sand. Elastic properties of the salt and hydrocarbon bearing zones were also extracted from the well data. In addition, BHP provided the residual depth stretching function necessary to correct for transverse anisotropy to allow agreement between the seismic layer depths and true depths measured in the wells. The base structural model was modified by Chevron. These modifications included an increase of top salt rugosity of approximately +/-70m (200ft), the incorporation of two extra faults below the Pluto salt, and added relief to the seafloor of 152m (500ft). Finally, a Chevron proprietary model building package was used to the further populate the model with a mix of stratigraphically parallel and pinching-out reflectors, that average 91-122m (300-400ft) in thickness. In addition, elastic properties were assigned to all of the layers. The final depth layer model is depicted in Figure 1. Special care was taken in the geometric specification of two gas sand reservoirs penetrated by wells. In addition, several other gas sands were introduced below salt. Two non-geological features were added to the model for synthetic seismic S/N benchmarking. The first is a series of point diffracting disks at depth levels of 5,180m and 7,620m (17 & 25kft). The second is a horizontal mother salt layer occupying the bottom 152m (500ft) of the model. Two check-shot surveys in the plane of the section provided a consistent measure of the Vp gradient on a gross scale. These velocities were in agreement with the pre-stack depth migration velocities above salt, but differed by up to 10% below salt. Individual layers fluctuated up to 75m/s (250ft/sec) about this trend, with the magnitude of deviation from trend dependent upon whether a facies was shale or sand rich. Seven lithologies were created with unique depth variant velocity functions. When the layers are randomly assigned in the depth section, the resultant velocity profile is characterized by small random fluctuations about a linear gross velocity gradient. Of the seven facies, five are shale and two are sand, in rough correspondence with their relative log population. The Vp values for both gas sands and their associated water legs and capping shales were derived from sonic logs taken in these intervals, and the salt velocity is from the check-shot data. For subsalt control, a 10kft zone from one of the in-plane wells provided Vp, Vs and density trends. This gave an estimate of Vp/Vs ratio of 2.3 in the shale-dominated zone and 2.0 in the sand-dominated zone, and was used to convert from Vp to Vs. For salt, a Vp/Vs ratio of 1.729 was assumed. The same detailed logs below base salt provided good estimates of density trends between 10kft and 20kft below mud-line. This trend was extrapolated

vertically through the model. Salt density of 2.16 g/cc was obtained from the literature. Several horizons were assigned modified densities to increase their reflection amplitude on the seismic simulations. Figure 2 depicts the Pluto 1.5 computed acoustic impedance profile (=Vp x Density). In order to mimic the seismic expression of the occasional hummocky facies (laterally variable seismic facies [sand], sandwiched between laterally smooth facies [shale]) which is commonly observed on depth migrated sections, specific layers were chosen to be perturbed. Slight fluctuations in the elastic properties were introduced to a small percentage of grid points within this layer. These perturbations produced more realistic diffracted energy in the time data, and when migrated with the true velocity provided a realistic seismic facies expression. In a separate process, every grid point of the allochthonous salt was also perturbed. The resultant finite difference modeling did not produce coherent diffractions but instead provided some mild attenuation due to scattering in the salt. The resulting Vp, Vs, and density models were subsequently gridded to 7.62m X 7.62m (25ft X 25ft) X-Z bins and used as the nodal values for the numerical computations.

0 105kft 30kft Figure 1. Pluto 1.5 Depth Layer Profile 30kft Figure 2. Pluto 1.5 Acoustic Impedance (Vp x Density) Profile

COMPUTATION OF 2D PLUTO 1.5 ELASTIC EARTH MODEL BP conducted model preparation and finite difference shot computations. After receiving the gridded models, it was necessary to pad both edges, top, and bottom for each of the three models (Vp, Vs, and Density.) Computation of the p-wave seismic shot records was done using PSVR4, a fourth order finite difference modeling code (Levander, 4 th Order Finite difference P-SV Seismograms, Geophysics Vol 53, 1425-1436, 1988). The modeling was conducted on collection of sun workstations during the evening hours and weekends. Each run took about 10 days and used 60 workstations. Separate shot computations took approximately 4.5 hours each on a Sun Ultra 2 workstation. A summary of some key shot geometries and data set statistics are shown below: Source Inc: 22.86m (75ft) # channels/shot: 540 Receiver Inc: 22.86m (75ft) # shots: 1387 Near offset: 0m # traces: 748,980 Far offset: 8.229km (27,000ft) behind shot sample rate: 8 ms 3.962km (13,000ft) ahead of shot trace length: 9000 ms Note that the dataset is a 2D line with a 2D source and collected on a 7.62m X 7.62m (25ft X 25ft) grid. The model has been computed with a 15 Hz Ricker Wavelet and associated source and receiver ghosts. The resultant shot gathers were then processed as conventional streamer seismic data and imaged through Kirchhoff pre-stack depth migration. Figure 3 shows a near-trace section (in time) and illustrates the complex nature of both primary and multiple events. Figure 4 shows the modeled data after pre-stack depth migration of all offsets and stack. Note the key surface related water bottom and salt related multiples. Imaging of the primary reflection events below salt is relatively uniform. CONCLUSIONS The SMAART Joint Venture has generated a detailed full elastic 2D numeric model and corresponding dataset that represents realistic seismic imaging and noise characteristics of deep water Gulf of Mexico sub-salt objectives. The synthetic dataset has been designed to test de-multiple algorithms and strategies but can be used to test other wavefield techniques. SMAART is releasing the dataset to promote additional research. Detailed information regarding the model and availability can be obtained from the SMAART JV web site at www.smaartjv.com. ACKNOWLEDGEMENTS The authors wish to thank other current and former members of the SMAART JV for their contribution to the development and use of the Pluto 1.5 model. These include R. Ergas (Chevron), J. Keliher (Texaco), K. Bishop (Texaco), J. Paffenholz (BHP) and Mohamed Hadidi (Mobil).

0 105kft 9 sec Figure 3. Pluto 1.5 Brute Near-Trace Section

0 105kft 30kft Figure 4. Pluto 1.5 Final Pre-Stack Depth Migrated Stack Section