Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Similar documents
Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Self-started unidirectional operation of a fiber ring soliton. laser without an isolator

Bound-soliton fiber laser

Dark Soliton Fiber Laser

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser

Bound states of gain-guided solitons in a passively modelocked

Group interactions of dissipative solitons in a laser cavity: the case of 2+1

Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Induced solitons formed by cross polarization coupling. in a birefringent cavity fiber laser

arxiv: v1 [physics.optics] 26 Mar 2010

Large energy mode locking of an erbium-doped fiber. laser with atomic layer graphene

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

SOLITON DYNAMICS IN PASSIVELY MODE-LOCKED FIBER LASERS ZHAO LUMING 2006

Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion

Highly Nonlinear Fibers and Their Applications

Experimental studies of the coherence of microstructure-fiber supercontinuum

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity

Optical solitons and its applications

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons.

Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

Generation of supercontinuum light in photonic crystal bers

Feedback-controlled Raman dissipative solitons in a fiber laser

Multiplexing of polarization-maintaining. photonic crystal fiber based Sagnac interferometric sensors.

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser

Harnessing and control of optical rogue waves in. supercontinuum generation

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Dark Pulse Emission of a Fiber Laser

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres

Orthogonally polarized bright dark pulse pair. generation in mode-locked fiber laser with a large-angle

arxiv:quant-ph/ v1 5 Aug 2004

B 2 P 2, which implies that g B should be

Analytical Solution of Brillouin Amplifier Equations for lossless medium

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating

Linear pulse propagation

A short tutorial on optical rogue waves

Ultrafast Laser Physics

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Graphene oxide mode-locked femtosecond erbium-doped fiber lasers

Gratings in Electrooptic Polymer Devices

Dark pulses for resonant two-photon transitions

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Applications of Nonlinear Fiber Optics. Second Edition

Partially coherent noise-like pulse generation in amplified spontaneous Raman emission

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

DISTRIBUTION A: Distribution approved for public release.

Coherent Raman imaging with fibers: From sources to endoscopes

Nanocomposite photonic crystal devices

Decay of Higher Order Solitons in the presence of Dispersion, Self-steeping & Raman Scattering

Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser

Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor

1 Mathematical description of ultrashort laser pulses

arxiv: v2 [physics.optics] 29 Aug 2017

Ultrafast Laser Physics

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30

Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd

Nonlinear dynamics of mode-locking optical fiber ring lasers

R. L. Sharma*and Dr. Ranjit Singh*

Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers. Zhimin Shi

Dmitriy Churin. Designing high power single frequency fiber lasers

Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser

Nonlinear effects and pulse propagation in PCFs

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

Signal regeneration - optical amplifiers

CW-pumped polarization-maintaining Brillouin fiber ring laser: II. Active mode-locking by phase modulation

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes

New Concept of DPSSL

Femtosecond pulse generation from a Topological Insulator. mode-locked fiber laser

Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings

in dispersion engineering of mode-locked fibre

Direct measurement of spectral phase for ultrashort laser pulses

Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings

OPTICAL AMPLIFICATION AND RESHAPING BASED ON ROGUE WAVE IN THE FEMTOSECOND REGIME

Fiber Lasers. Chapter Basic Concepts

Coherent Combining and Phase Locking of Fiber Lasers

Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 µm

GRAPHENE BASED SOLITON MODE-LOCKED ERBIUM DOPED FIBER LASER FOR SUPERCONTINUUM GENERATION

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Enhanced Detection of Gas Absorption Using an Erbium-Doped Fiber Ring Laser

Ho:YLF pumped HBr laser

*Corresponding author:

Mid-IR Photothermal Imaging with a Compact Ultrafast Fiber Probe Laser

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems

Transcription:

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China 2 Department of Electrical Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China 3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 * Corresponding author: enlmzhao@polyu.edu.hk Abstract: We demonstrate that soliton generation in a fiber laser containing a fiber Bragg grating exhibits spectral enhancement near the Bragg resonance wavelength. The Bragg grating leads to a spectral hole on the soliton spectrum while the observed enhancement is always located at the long wavelength side of the Bragg resonance. 2008 Optical Society of America OCIS codes: (060.5530) Pulse propagation and temporal solitons; (060.3735) Fiber Bragg gratings; (190.5530) Pulse propagation and temporal solitons. References and links 1. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Supercontinuum generation in a fiber grating, Appl. Phys. Lett. 85, 4600-4602 (2004). 2. P. S. Westbrook, J. W. Nicholson, and K. S. Feder, Grating phase matching beyond a continuum edge, Opt. Lett. 32, 2629-2631 (2007). 3. K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, "Improved stabilization of a 1.3 µm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating," Opt. Lett. 31, 277-279 (2006). 4. Y. Li, F. Salisbury, Z. Zhu, T. Brown, P. Westbrook, K. Feder, and R. Windeler, "Interaction of supercontinuum and Raman solitons with microstructure fiber gratings," Opt. Express 13, 998-1007 (2005). 5. P. S. Westbrook and J. W. Nicholson, "Perturbative approach to continuum generation in a fiber Bragg grating," Opt. Express 14, 7610-7616 (2006). 6. D. R. Austin, J. A. Bolger, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Narrowband supercontinuum control using phase shaping," Opt. Express 14, 13142-13150 (2006). 7. A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Filling a spectral hole via selfphase modulation, Appl. Phys. Lett. 87, 121113 (2005). 8. E. N. Tsoy and C. M. de Sterke, Oscillations of the soliton parameters in nonlinear interference phenomena, Phys. Lett. A 372, 1856-1861 (2008). 9. J. A. Bolger, F. Luan, D. I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, Tunable enhancement of a soliton spectrum using an acoustic long-period grating, Opt. Express 15, 13457-13462 (2007). 10. N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer, New York, 2005). 11. M. Horowitz, Y. Barad, and Y. Silberberg, Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser, Opt. Lett. 22, 799-801 (1997). 12. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Analytical theory of additive pulse and Kerr lens mode locking, IEEE J. Quantum Electron. 28, 2086-2096 (1992). 13. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers, Phys. Rev. A 72, 043816 (2005). 1. Introduction Spectral enhancement (SE) was first observed in supercontinuum (SC) generation in a fiber grating [1]. Westbrook et al. found that SC generation in a fiber containing a Bragg grating could exhibit more than 10 times of SE near the Bragg resonance wavelength, and the position of the SE could be located over a large wavelength range within the continuum with gratings of different Bragg wavelengths. The fiber Bragg grating (FBG) could even extend the SE to spectral regions beyond the generated continuum edge [2]. Such grating-related SE has shown great potential to improve the signal to noise ratio in frequency metrology applications using fiber continuum combs [3]. (C) 2009 OSA 2 March 2009 / Vol. 17, No. 5 / OPTICS EXPRESS 3508

To explain the physical mechanism of the SE generation in SC, various experimental, theoretical, and numerical studies have been carried out [1, 4-6]. Li et al. [4] believed that the SE around the Bragg wavelength is actually a dispersive wave. The linear Bragg reflection can be changed into nonlinear SE by increasing the coupling of SC into the grating. Westbrook et al. [5] derived a perturbative solution to the nonlinear Schrödinger equation that includes the effect of a FBG under two assumptions: one is that the bandgap of the grating is much smaller than the pulse bandwidth; the other is that the nonlinear interaction between the grating and the unperturbed waves is negligible. Applying their method to uniform and sampled gratings, they reproduced the large SE observed near the Bragg resonance when SC was generated in a FBG. Austin et al. [6] considered the SC field as a train of discrete pulses. They focused on the dynamics of the enhancement mechanism for a single pulse rather than the full SC description [1, 5]. They theoretically derived that the SE generation is due to the narrow spectral phase filtering resulted from the FBG and the nonlinear propagation in FBG. Their theoretical derivation perfectly explained a key feature of the experimentally observed SE: depletion for wavelengths below the bandgap and the SE on the long wavelength side. The role of the FBG in pulse propagation includes two parts: the phase filtering and the nonlinear propagation, either independently or interactively. To support their theory, they further considered a more general situation in which a narrowband phase feature is imposed on a pulse prior to propagating through a nonlinear medium. They verified that the nonlinear SE caused by the FBG is due to the relative phase rotation between the linear and nonlinear components, and any narrow phase feature followed by nonlinear propagation would exhibit SE effect. Präkelt et al. experimentally studied the SE dynamics based on the self-phase modulation [7] and the theoretical work for clarifying SE observed in SC experiments was recently presented by Tsoy et al. [8] The above-mentioned works [1-6] are done in the scope of pulse propagation in FBG and for SE in SC generation, and a common assumption made is that the SC is a superposition of a series of pulse [4-6]. Bolger et al. [9] have reported tunable SE of a soliton spectrum using an acoustic long-period grating. However, the SE was superimposed onto a Raman shifted soliton at 1620 nm, not the original pulse wavelength at 1550 nm. It is well known that soliton evolution in a fiber laser is equivalent to the soliton propagation in a recurred fiber links. However, so far as we know, no experimental observation of SE in a pulse generated in a fiber laser is reported. The pulse generated in the fiber laser is a dissipative soliton [10] rather than a conventional soliton in a fiber. Apart from the balance between the cavity dispersion and the fiber nonlinearity a pulse would experience during propagation, the balance between the gain and losses determines the dissipative features of the solitons generated in the fiber laser. A question would be whether the phenomenon of SE could be observed in a dissipative soliton generated in fiber lasers containing a FBG? In this paper we present the first experimental observation of SE in a soliton fiber laser with a FBG in the cavity. We demonstrate that, similar to the SE generated in SC, soliton generation in a fiber laser containing a FBG exhibits SE near the Bragg resonance wavelength. The FBG leads to a spectral hole on the soliton spectrum while the observed enhancement is always located at the long wavelength side of the Bragg resonance in our experiments. For noise-like pulse mode locking [11], the SE is weakened and generally only spectral hole caused by the FBG can be observed. 2. Laser schematic and experimental results Figure 1 shows the fiber laser. It has a ring cavity of about 10.5 meters. Therefore the repetition rate of the fiber laser is about 19 MHz. Apart from the 7.5 m erbium-doped fiber (StockerYale: EDF-1480-T6), all other fibers are standard single-mode fiber. The averaged coefficient of the second-order dispersion is β 2-15.7 ps 2 /km at the wavelength of 1550 nm. Different from the conventional soliton fiber lasers, a uniform FBG was incorporated in the cavity. The FBG was inscribed on a 0.3 m standard single-mode fiber using the phase mask method and the FBG segment is about 1.5 cm. The laser is mode-locked with the nonlinear polarization rotation technique [12]. An in-line fiber-type polarization-dependent isolator is inserted between the wavelength division multiplexer (WDM) and the EDF. Four pieces of (C) 2009 OSA 2 March 2009 / Vol. 17, No. 5 / OPTICS EXPRESS 3509

wave-plates mounted on a 7-cm-long fiber bench are used to adjust the polarization of the light. The laser is pumped by a Raman fiber laser source (BWC-FL-1480-1) of wavelength 1480 nm. We noted that the isolator between the WDM and the EDF is necessary for the selfstarted mode locking. As the reflection of the Bragg wavelength of the FBG is about 15 db, without the isolator, the FBG can function as a high reflection mirror at Bragg resonance wavelength. Combined with low reflection from the other fiber end or the waveplate on the fiber bench and the strong gain of the EDF, a CW lasing centered at the Bragg wavelength was always obtained instead of the mode locking. WDM λ 4 λ λ λ 2 4 4 10% Output coupler Isolator EDF FBG Fig. 1. Schematic of the fiber laser. λ/4: quarter-wave plate; λ/2: half-wave plate; FBG: fiber Bragg grating; EDF: erbium-doped fiber; WDM: wavelength division multiplexer. Fig. 2. Transmission spectrum of the uniform FBG. We used the amplified spontaneous emission of the EDF with 59.1 mw pump power to directly measure the transmission spectrum of the FBG used. It is shown in Fig. 2. The Bragg wavelength is about 1557.9 nm and the 3 db bandwidth of the spectrum is about 0.096 nm. Experimentally we found that with appropriate orientation setting of the waveplates, selfstarted mode locking can be achieved provided the pump power is strong enough. Similar to the case of soliton operation in fiber lasers without FBG [13], single soliton, multiple solitons, or noise-like pulse could be generated in the fiber laser. However, due to the existence of the FBG, spectral hole was always observed on the optical spectrum of the mode-locked pulse. When the central wavelength of the generated soliton is close to the Bragg wavelength of the FBG, SE could be observed on the spectrum. Figure 3(a) and Fig. 3(b) show the optical spectrum and the autocorrelation trace of a typical state observed. The state was obtained with 177.6 mw pump power and the output average power is about 2.16 mw. It is clear that there (C) 2009 OSA 2 March 2009 / Vol. 17, No. 5 / OPTICS EXPRESS 3510

is about 10dB SE superimposed on the soliton spectrum. The pulse width of the soliton is about 340.2 fs if a Sech 2 pulse profile is assumed. To highlight the SE relationship with the FBG, we have shown in Fig. 3(c) the zoom-in regime around the Bragg wavelength. Compared with Fig. 2, the short wavelength side of the FBG spectrum was inherited. The spectral modulation of Fig. 3(c) is caused by the multiple soliton operation [13]. The FWHM of the SE is about 0.07 nm, which corresponds to the spectral width of a ~100 ps pulse. Due to the limited scan range of the autocorrelator used (50 ps) and the weak strength of this broad dispersive wave, such background is not easy to be distinguished in the autocorrelation trace. Anyway, Fig. 3(b) showed a very weak and broad background. (a) (b) (c) Fig. 3. A typical soliton operation state with 10dB spectral enhancement. (a) Optical spectrum; (b) Autocorrelation trace; (c) Zoom-in spectrum around the Bragg resonance. Experimentally we tried to study the SE variation with the continuous shift of the central wavelength of the generated soliton. However, as the tuning of the central wavelength of the generated soliton is through rotating one of the waveplates, and such modulation simultaneously changes the linear phase delay bias in the cavity [13], which will at the same (C) 2009 OSA 2 March 2009 / Vol. 17, No. 5 / OPTICS EXPRESS 3511

time considerably change the soliton parameters such as pulse width, peak power and so on. No quantitative relation could be obtained. The SE exists once the mode-locked pulse is generated in the fiber laser. Experimentally we can still observe SE when the central wavelength of the soliton was shifted away from the Bragg wavelength. Figure 4 showed examples when the soliton was shifted to either the short wavelength side or the long wavelength side. The SE and the spectral hole still existed on the soliton spectrum. However, the SE is much weaker compared with that shown in Fig. 3(a). Fig. 4. Optical spectrum of soliton operation with the central wavelength of the soliton largely shifted away from the Bragg wavelength. (a) (b) Fig. 5. Noise-like pulse. (a) Optical spectrum; (b) Autocorrelation trace. We also studied the influence of the FBG on the noise-like pulse. As shown in Fig. 5(a), the spectral hole induced by the FBG could be observed when the soliton fiber laser is operated in the noise-like pulse mode locking state. However, the SE is very weak compared to the case of soliton mode locking. Physically it is easy to understand such performance: the noise-like pulse consists of many evolving ultrashort pulses bound together as indicated by Fig. 5(b), therefore, the phase of the individual ultrashort pulses or intra-structure of the noiselike pulse is changing when it goes through the FBG; secondly, the central wavelength of the individual ultrashort pulses or intra-structure of the noise-like pulse randomly varies, which may be far away from the Bragg resonance wavelength. As the measured optical spectrum is actually an averaged one (the scan time of the OSA is ~ ms, while the repetition rate of the fiber laser is ~ MHz), the SE caused by the phase shaping of the FBG [6] would be further weakened. We note that in our experiments no matter the central wavelength of the soliton / noiselike-pulse was coincided or shifted away from the Bragg wavelength, the SE always appeared at the long wavelength side. (C) 2009 OSA 2 March 2009 / Vol. 17, No. 5 / OPTICS EXPRESS 3512

3. Discussion The generation of SE needs two conditions: a spectral signal (generally provided by an ultrashort pulse) and a filter. As the fiber laser itself can generate an ultrashort pulse, the inserting the FBG in the laser cavity results in a simple SE source that can be used for possible applications [3]. The fiber laser with an inserted FBG is also a suitable test-bed for the study of SE phenomenon as we can change the features of the FBG to study the influence of the FBG to the SE generation. The cavity structure also strengthens the interaction between the FBG and the spectral signal as the pulse cycles in the laser cavity, which is not possible for pulse propagation in fibers. Although the inserted FBG changed the laser dynamics, because of the short length of the FBG compared with the cavity length and the narrow bandwidth of the FBG compared with the soliton spectrum, we did not observe significant changes for the fiber laser performance compared with the fiber laser without the FBG. 4. Conclusion In conclusion, we have reported the first experimental observation of SE based on soliton operation in a fiber laser. The inclusion of a FBG in the cavity would not affect the soliton dynamics of the fiber laser as the soliton and noise-like pulse mode-locking could still be selfstarted like that of the laser without the FBG. However due to the existence of the FBG, spectral hole is imposed on the optical spectrum of the solitons or the noise-like pulses. SE is observed on the optical spectrum of the solitons. And the SE is stronger when the soliton central wavelength is closer to the Bragg wavelength of the FBG. As the FBG bandwidth is far smaller than the soliton bandwidth of around 8nm, the hypothesis in Ref. [5, 6] can be fully satisfied. Therefore, the theoretical analysis and conclusion in Ref. [5, 6] could be applied here but now it is indeed based on dissipative solitons but not on SC generation. That is, the SE is caused by the phase filtering resulted from the FBG and the interaction between the dissipative soliton and linear dispersive waves during propagation. Acknowledgment This work is supported by the National Research Foundation Singapore under the contract NRF-G-CRP 2007-01 and the Central Research Grant of the Hong Kong Polytechnic University under project G-YX0R. (C) 2009 OSA 2 March 2009 / Vol. 17, No. 5 / OPTICS EXPRESS 3513