Long distance weak annihilation contribution to

Similar documents
A new long-distance contribution to B K/π l + l decays

Recent results on CKM/CPV from Belle

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Electroweak Theory: 5

arxiv:hep-ph/ v4 18 Nov 1999

RESULTS FROM B-FACTORIES

CP violation in quark flavor physics

Flavor physics. Yuval Grossman. Cornell. Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

B the Tevatron

arxiv: v1 [hep-ph] 5 Dec 2014

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Measurement of CP violation in B J/ψK 0 S. decays. Frank Meier TU Dortmund. XXIX Rencontres de Physique de la Vallée d Aoste March 1 7, 2015

Constraints on new physics from rare (semi-)leptonic B decays

Rare decays, radiative decays and b sll transitions at LHCb

Rare Hadronic B Decays

B Kl + l at Low Hadronic Recoil

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Recent results from the LHCb

Angular Analysis of the Decay

arxiv: v1 [hep-ph] 24 Jan 2017

LHCb New B physics ideas

Standard Model of Particle Physics

Measurements of CP violating phases in B decays at LHCb

Unitary Triangle Analysis: Past, Present, Future

Search for Physics Beyond the Standard Model at B Factories

Rare decays at LHCb Siim Tolk (NIKHEF, Amsterdam) on behalf of the LHCb Collaboration

Discussion on (Heavy) Flavor Physics

New Physics or hadronic corrections

CP Violation: A New Era

arxiv: v1 [hep-ex] 15 May 2017

Measurement of the CKM Sides at the B-Factories

Status of the CKM Matrix and a simple New Physics scenario

La Fisica dei Sapori Pesanti

CP Violation at the LHC - workshop 2017

CP Violation sensitivity at the Belle II Experiment

B-meson anomalies & Higgs physics in flavored U(1) model

Recent Results on Radiative and Electroweak Penguin B Decays at Belle. Akimasa Ishikawa (Tohoku University)

CP Violation Beyond the Standard Model

Status of the CKM Matrix and a simple New Physics scenario

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

A.Mordá. INFN - Padova. 7 th July on behalf of the Belle2 Collaboration. CP Violation sensitivity at the Belle II Experiment

Rare Hadronic B decays at BaBar

Flavour Physics Lecture 1

New Physics search in penguin B-decays

How well do we know the Unitarity Triangle? An experimental review

Federico Mescia. Review of Flavour Physics. ECM & ICC, Universitat de Barcelona. FFP14, July 17 th 2014 Marseille. - Outline

Cracking the Unitarity Triangle

Radiative and Electroweak Penguin Decays of B Mesons

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Advances in Open Charm Physics at CLEO-c

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

PoS(CKM2016)113. Measurement of γ from B meson decay to D ( ) K ( )

CKM Matrix and CP Violation in Standard Model

CP violation and rare decays at LHCb. Jibo HE (UCAS), for the LHCb collaboration Presented at CLHCP PKU

KEKB collider and Belle detector

Vincent Poireau CNRS-IN2P3, LAPP Annecy, Université de Savoie, France On behalf of the BaBar collaboration

Superb prospects: Physics at Belle II/SuperKEKB

LHCb results and prospects

Charm CP Violation and the electric dipole moment of the neutron

La Belle Epoque. K.Trabelsi kek.jp Lausanne, 22 Jan, 2009

Logitudinal Lepton Polarization Asymmetry in pure Leptonic B Decays

Lepton Violation Studies and Rare Radiative Decays in BaBar. John M. LoSecco, Notre Dame. for the BaBar Collaboration. Miami 06, December 2006

12 Best Reasons to Like CP Violation

Flavour physics beyond the Standard Model

Results from B-Physics (LHCb, BELLE)

D - physics. Svjetlana Fajfer. Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia

Mikihiko Nakao (KEK) June 16th, 2006, SUSY06, Newport Beach, CA.

Measurements of the phase φ s at LHCb

The pheno analysis of B K ( ) µ + µ decays in 2011+

arxiv: v4 [hep-ph] 19 Apr 2017

Semileptonic B decays at BABAR

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

PoS(FPCP2009)013. Fabrizio Scuri I.N.F.N. - Sezione di Pisa - Italy

Latest time-dependent CP-violation results from BaBar

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

The weak interaction Part II

Determining the Penguin Effect on CP Violation in

Beyond Standard Model Effects in Flavour Physics: p.1

Matter, antimatter, colour and flavour in particle physics

Review of Standard Tau Decays from B Factories

Flavor Physics Part 2

LHCb results relevant to SUSY and BSM physics

B Factories. Alan Watson University of Birmingham, UK

B Physics Beyond CP Violation

Review of D-D Mixing

Rare beauty and charm decays at LHCb

Weak Decays, CKM, Anders Ryd Cornell University

Status of the Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

Measurements of CPV and mixing in charm decays

arxiv: v1 [hep-ex] 7 Jul 2016

Perspectives in B Physics: Results from LHCb

Vub. Longstanding discrepancy between exclusive and inclusive V ub. V ub / V cb constrains the length of the unitarity triangle opposite the angle β.

B Physics: Theoretical Aspects Anirban Kundu

Latest results on B DK/Dπ decays from Belle

Measurements of f D + and f Ds

Motivation Fit Method Inputs Results Conclusion

arxiv:hep-ph/ v1 3 May 1995

Decays of heavy mesons in the framework of covariant quark model

Transcription:

Long distance weak annihilation contribution to B ± (π/k) ± l + l Sergio Tostado In collaboration with: A. Guevara, G. López-Castro and P. Roig. Published in Phys. Rev. D 92, 054035 (2015). Physics Department, CINVESTAV-IPN November 5, 2015 XV Mexican Workshop on Particles and Fields Mazatlán, México S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 1 / 38

1 Motivation 2 Weak Efective Hamiltonian for FCNC 3 Long Distance Weak Annihilation... 4 Matching to SD 5 Results 6 Conclusions S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 2 / 38

Introduction In the SM mixings between quarks occur in the CC L CC g 2 W + µ ŪLV CKM γ µ D L + h.c. (1) which are well described by the CKM matrix 1 where 2 V us λ 0.2255, and 1 M. Kobayashi and T. Maskawa, PTP 49, 652 (1973). 2 Wolfenstein, 1983. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 3 / 38

Current status 3 1.5 excluded at CL > 0.95 excluded area has CL > 0.95 1.0 γ & m s m d sin 2β 0.5 ε K α m d η 0.0 0.5 α V ub γ β α 1.0 γ ε K sol. w/ cos 2β < 0 (excl. at CL > 0.95) 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 Experiments expect to reach the % level in the near future. 3 K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014). S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 4 / 38 ρ

Flavor Changing Neutral Current In the SM FCNC are supressed at the tree level. The CMS and LHCb collaboration, Nature 522, 6892 (2015). They are induced by loops and are sensitive to new physics (NP) effects. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 5 / 38

FCNC experimental results Branching Ratios LHCb and CMS: Br(B 0 s µ + µ ) = (2.8 +0.7 0.6 ) 10 9 Br(B 0 µ + µ ) = (3.9 +1.6 1.4 ) 10 10 Agree with SM at 1.2σ and 2.2σ, respectively. SM a Br(B 0 s µ+ µ ) = (3.66 ± 0.23) 10 9 Br(B 0 µ + µ ) = (1.06 ± 0.09) 10 10 a Bobeth et.al. PRL 112 (2014) 101801. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 6 / 38

Angular Observables 4 in B K l + l 4 LHCb coll., PRL 111 (2013) 191801. Straub et. al., Eur.Phys.J. C75 (2015) 8, 382. Mathias et.al., JHEP 1412 (2014) 125 and 1305 (2013) 137. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 7 / 38

Tests of lepton universality Ratios 5 R D = Br(B0 D + τ ν τ ) Br(B 0 D + l ν l ) (2) 5 Kamenik, talk given at Jozef Stefan Institute. LHCb, PRL 115 (2015) 111803. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 8 / 38

S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 9 / 38

We are interested in the ratio 6 : where 6 LHCb, PRL 113 (2014) 151601. Babar, PRD 86 (2012)031012. Belle, PRL 103 (2009) 171801. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 10 / 38

If tensions are due to NP... Neutrinos: See Prof. Valle talk. 7 7 D. Straub, talk given at Rencontres de Moriond (2015). S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 11 / 38

This talk Could this anomaly be caused by a missing process? S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 12 / 38

Weak efective hamiltonian for FCNC For B + (K, π) + l + l : S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 13 / 38

Weak efective hamiltonian for FCNC S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 14 / 38

Four quark operators S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 15 / 38

Weak efective hamiltonian for FCNC with the matrix elements similar for B π. All of them related to a single form factor f + (q 2 ) ξ P (q 2 ) in the limit m b (Isgur-Wise). S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 16 / 38

the leading contributions comes from with F V = C 9 + 2m b M B T P (q 2 ) ξ(q 2 ), F A = C 10 (3) [ T P (q 2 ) = ξ(q 2 ) C eff (0) 7 + M B ] Y (0) (q 2 ) m b C 9 = 4.214 and C 10 = 4.312 have been computed at NNLL 8 and C eff 7 at NLO 9. WA included in Y (0). (4) 8 Beneke et.al. NPB 612 (2001)25. 9 Buras et. al., Rev. Mod. Phys. 68, 1125 (1996) S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 17 / 38

Form Factors The form factors are taken in the form ξ π (q 2 ) = ξ K (q 2 ) = where P P (q 2 ) is a polynomial 10. 0.918 1 q 2 /(5.32 GeV) 2 0.675 1 q 2 /(6.18 GeV) 2 + P π(q 2 ), 0.0541 1 q 2 /(5.41 GeV) 2 + 0.2166 [1 q 2 /(5.41 GeV) 2 ] 2 + P K (q 2 ), 10 Ball, Zwicky, PRD 71 (2005) 014015. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 18 / 38

SM prediction with: for (q 2 min, q 2 max) = (1, 6)(2, 6)(1, 7)(2, 7)GeV 2, from top to bottom 11. 11 Bobeth et.al., JHEP 12 (2007) 040. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 19 / 38

An interesting observable (LHCb) S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 20 / 38

Long distance WA contribution to B ± (π/k) ± l + l S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 21 / 38

LD WA contribution to K ± π ± l + l has been previously considered by Ecker, Pich and Rafael 12. 12 Ecker, Pich and Rafael, Nucl. Phys. B. 291 (1987) 692. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 22 / 38

The decay amplitude corresponding to WA M WA LD = e2 q 2 lγ µ l M WA µ (5) where M WA µ denotes the effective hadronic electromagnetic current coupled to the leptonic current. Conservation of the electromagnetic current demands M WA µ = [ (p B + p P ) µ m2 B m2 P q 2 q µ ] F (q 2 ), (6) where only the first term within square brackets gives a non-vanishing contribution. q µ lγ µ l = 0, we can also replace (p B + p P ) µ 2p Bµ S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 23 / 38

S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 24 / 38

The leading order one-photon exchange (WA) amplitude corresponding to the diagrams (i) and (j) can be computed taking into account that 0 ūγ µ (1 γ 5 )b B = i f B p µ B, P Dγ µ (1 γ 5 )u 0 = i f P p P µ, (7) and is given by M LD,WA = 2G F (4πα)V ub VuDf 1 B f P q 2 (mb 2 m2 P ) [ mb 2 ( FP (q 2 ) 1 ) mp 2 ( FB (q 2 ) 1 )] p µ lγ B µ l, (8) where f X denotes the decay constant of the pseudoscalar meson X according to the PDG 13 conventions for f K,π,B and F X (q 2 ) is the electromagnetic form factor of the corresponding meson. 13 PDG 2014 S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 25 / 38

Long distance WA contribution to C 9 Due to the vector nature of the one-photon exchange contribution, its amplitude can be absorbed into the contribution of the O 9 operator in the SM amplitude under the replacement [ ξ P (q 2 )F V ξ P (q 2 )F V + κ P mb 2 FP (q 2 ] ) 1, (9) where κ P = 8π 2 V ubv ud V tb V td q 2 f B f P mb 2. (10) m2 P Note that κ P O(10 2 ) V ubv ud V tb V so that its influence is governed by the ratio of td CKM factors which is O(λ 0 ) for P = π and O(λ 2 ) for P = K. This suggests a larger effect for B π l + l transitions but a detailed analysis of the electromagnetic meson form factors is needed to confirm these expectations. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 26 / 38

Form Factors They are important in the 1GeV region, where theory is better controlled Two different approaches are used Resonance Chiral Theory (Ecker et.al. Nucl. Phys. B. 321 (1989) 311) Gounaris- Sakurai parametrizations (PRL 21 (1968) 244) S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 27 / 38

π electromagnetic form factor F π (m ll 2 ) 2 1 BaBar data RχT BaBar fit 0.01 0.5 1 1.5 2 2.5 3 m ll (GeV) S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 28 / 38

K electromagnetic form factor 10000 100 BaBar data RχT BaBar fit F K (m ll 2 ) 2 1 0.01 1 1.2 1.4 1.6 1.8 2 2.2 2.4 m ll (GeV) S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 29 / 38

(1/Γ)(dΓ/dm ll 2 ) (GeV -2 ) (1/Γ)(dΓ/dm ll 2 ) (GeV -2 ) 1e-06 1e-12 µ e 1e-06 0.0001 0.01 1 2 2 m ll (GeV ) 1e-06 µ e There is a huge breaking of lepton universality. It is important only for q 2 0.3GeV 2. Its effect is always smaller than the SD contribution RK SM = 1 + (3 ± 1) 10 4 Rπ SM = 1 + (6 ± 1) 10 4 RP LD 1 = O(10 5 ) (P = K, π) 1e-12 1e-06 0.0001 0.01 1 2 2 m ll (GeV ) S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 30 / 38

Matching of the RχT and SD descriptions of the WA contributions For q 2 q 2 match P = (K, π) while for q 2 q 2 match S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 31 / 38

Smooth matching between the LD and SD WA contributions S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 32 / 38

Smooth matching between the LD and SD WA contributions S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 33 / 38

Results B π l + l B K l + l 0.05 q 2 8 GeV 2 1 q 2 8 GeV 2 1 q 2 6 GeV 2 LD (9.06 ± 0.15) 10 9 (4.74 ± 0.05) 10 10 (1.70 ± 0.21) 10 9 interf. ( 2.57 ± 0.13) 10 9 ( 2 +2 1 ) 10 10 ( 6 ± 2) 10 11 SD (9.57 +1.45 1.01 ) 10 9 (8.43 +1.31 0.87 ) 10 9 (1.90 +0.69 0.41 ) 10 7 Total (1.61 +0.15 0.11 ) 10 8 (8.69 +1.31 0.87 ) 10 9 (1.92 +0.69 0.41 ) 10 7 S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 34 / 38

Results B π l + l B K l + l 0.05 q 2 8 GeV 2 1 q 2 8 GeV 2 1 q 2 6 GeV 2 LD (9.06 ± 0.15) 10 9 (4.74 ± 0.05) 10 10 (1.70 ± 0.21) 10 9 interf. ( 2.57 ± 0.13) 10 9 ( 2 +2 1 ) 10 10 ( 6 ± 2) 10 11 SD (9.57 +1.45 1.01 ) 10 9 (8.43 +1.31 0.87 ) 10 9 (1.90 +0.69 0.41 ) 10 7 Total (1.61 +0.15 0.11 ) 10 8 (8.69 +1.31 0.87 ) 10 9 (1.92 +0.69 0.41 ) 10 7 68% 3% 1% Current accuracy is sensitive to it! Still ideal place to look for NP. It can be controlled, so it is a good place to search for NP! Very large hadronic contamination. It is better to take q 2 1GeV 2. For the fully integrated rate, the LHCb 14 15 measurements Br(B π l + l ) = (2.3 ± 0.6 ± 0.1) 10 8 Br(B π l + l ) = (1.83 ± 0.24 ± 0.05) 10 8 14 Ali et.al., JHEP12(2012)125. 15 arxiv:1509.00414 Br SM SD+LD (B π l + l ) = (2.6 +0.4 0.3 ) 10 8 (11) S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 35 / 38

CP violation A direct CP assymetry can be generated A CP (P) = Γ(B+ P + l + l ) Γ(B P l + l ) Γ(B + P + l + l ) + Γ(B P l + l ), (12) from the interference of the SD and LD diagrams, such that CP = Γ(B + P + l + l ) Γ(B P l + l ) = 32α 2 GF 2 f P f B Im {V tb VtDV ubv ud } ] dq 2 1 ds 12 [2(P q 2 (MB 2 m2 P ) B P + )(P B P ) M2 B q2 (13) 2 Im { ξ P (q 2 )F V (q 2 ) [ MB 2 ( FP (q 2 ) 1 ) mp 2 ( FB (q 2 ) 1 )]}, where s 12 = (p K + p + ) 2. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 36 / 38

(16.1 ± 1.9)%, for P = π, 0.05 q 2 8 GeV 2, A CP (P) = (7.8 ± 2.9)%, for P = π, 1 q 2 8 GeV 2, ( 1.0 ± 0.3)%, for P = K, 1 q 2 6 GeV 2. (14) (qmin 2, q2 max) Hou 16 [%] Our results 17 [%] Khodjamiriam 18 [%] (1, 8) GeV 2 13 ± 2 7.8 ± 2.9 - (1, 6) GeV 2 16 ± 2 9.2 ± 1.7 (14.3 +3.5 2.9 ) (2, 6) GeV 2 13 +2 3 7.7 ± 0.5 - Recently, for P = π (LHCb 19 ) A CP = 0.11 ± 0.12 ± 0.01, (1, 6)GeV 2 (15) 16 Hout et.al. PRD 90 013002 (2014) 17 A. Guevara, G. López-Castro, P. Roig and ST, PRD 92 (2015) 054035. 18 Khodjamiriam et.al. 1506.07760. 19 R. Aaij et.al. arxiv:1509.00414. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 37 / 38

Conclusions One-photon exchange contribution to the rare B ± P ± l + l decays, with P = π or K. Its effects in BR of the P = K case 1% with respect to the (top quark loop dominated) SD contribution for 1 q 2 6 GeV 2. The corresponding effect in P = π turns out to be significant in integrated observables starting close to the threshold. We suggest to take the range 1 q 2 8 GeV 2 for precision measurements. More refined measurements of the fully integrated branching fraction for this decay could be sensitive to our contribution. CP asymmetry is large in the case of a pion in the final state for 0.05 q 2 8 GeV 2, but also sizable and worth measuring in the 1 q 2 8 GeV 2 interval. Our CP violation results are smaller than those obtained from SD because of the different description (origin) of the WA amplitudes at low energies. S. L. Tostado (CINVESTAV-IPN) B ± (π/k) ± l + l November 5, 2015 38 / 38