Testing Saturation Physics with pa collisions at NLO Accuracy

Similar documents
Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

NLO Calculations of Particle Productions in pa Collisions

Saturation Physics and Di-Hadron Correlations

Introduction to QCD and Jet III

High energy QCD: when CGC meets experiment

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab

Introduction to Saturation Physics

Di-hadron Angular Correlations as a Probe of Saturation Dynamics

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

Long-range rapidity correlations in high multiplicity p-p collisions

Bo-Wen Xiao. Penn State

Gluon density and gluon saturation

Factorization in high energy nucleus-nucleus collisions

arxiv: v1 [nucl-th] 25 Sep 2017

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Adrian Dumitru. pp, pa, AA: - forward dijets - near-side long-range rapidity correlations

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions

arxiv: v1 [hep-ph] 27 Dec 2018

arxiv: v1 [nucl-ex] 7 Nov 2009

Institute of Particle Physics, Central China Normal University

How can we prove/disprove the relevance of Color Glass Condensate/saturation physics at the LHC? Javier L Albacete

Multiplicity distributions for jet parton showers in the medium

CGC effects on J/ψ production

Electromagnetic emission from the CGC at early stages of heavy ion collisions

Chemical composition of the decaying glasma

PoS(LHC07)034. Dijet correlations in pp collisions at RHIC

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory

arxiv: v2 [hep-ph] 29 Jun 2012

Dilepton transverse momentum in the color dipole approach

MAEDI-JSPS Sakura program

Anisotropic gluon distributions of a nucleus

High energy factorization in Nucleus-Nucleus collisions

Instability in an expanding non-abelian system

Zhong-Bo Kang Los Alamos National Laboratory

Resumming large collinear logarithms in the non-linear QCD evolution at high energy

High energy factorization in Nucleus-Nucleus collisions

Perturbative origin of azimuthal anisotropy in nuclear collisions

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Probing parton densities with γ and γ +Q production. in p A collisions. François Arleo. Workshop on proton-nucleus collisions at the LHC

Analytical properties of NLL-BK equation

arxiv: v1 [hep-ph] 13 Oct 2017

Phenomenology of prompt photon production. in p A and A A collisions

Photon from the Color Glass Condensate in the pa collision

Long-range angular correlations by strong color fields in hadronic collisions

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Kinematical correlations: from RHIC to LHC

PoS(Baldin ISHEPP XXI)032

arxiv: v2 [hep-ph] 19 Feb 2016

Physique des Particules Avancées 2

Heavy Ions at the LHC: First Results

Probing the small-x regime through photonuclear reactions at LHC

using photons in p A and A A collisions

arxiv: v2 [hep-ph] 28 Mar 2013

Color dipoles: from HERA to EIC

The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions

Selected topics in High-energy QCD physics

DIS 2004 Theory Highlights

Topics on QCD and Spin Physics

Charged particle production in Pb-Pb and p-pb collisions at ALICE

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

High Energy QCD and Pomeron Loops

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN

Quarkonium Production at J-PARC

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Resummation at small x

TMDs at small-x: an Operator Treatment

The Role of Heavy Quarks in Light Hadron Fragmentation. HUGS Manuel Epele Instituto de Física La Plata

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Understanding Parton Showers

QCD Factorization Approach to Cold Nuclear Matter Effect

Te Weizsäcker-Williams distribution of linearly polarized gluons (and its fluctuations) at small x

arxiv: v1 [hep-ph] 28 May 2012

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Diffusive scaling and the high energy limit of DDIS

Double parton scattering effects in kt-factorisation for 4 jet production. Mirko Serino

Transverse SSA Measured at RHIC

DAE-HEP, IIT Guwahati Dec,2014

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Energy loss in cold nuclear matter and suppression of forward hadron production.

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University

AN INTRODUCTION TO QCD

Factorization, Evolution and Soft factors

Baryon stopping and saturation physics in relativistic collisions

Zhong-Bo Kang Los Alamos National Laboratory

The Color Glass Condensate: Theory, Experiment and the Future

k T approaches in Drell-Yan dilepton

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Writing your own Monte Carlo Integrator

Opportunities with diffraction

Power corrections to jet distributions at hadron colliders

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

QCD Collinear Factorization for Single Transverse Spin Asymmetries

arxiv: v2 [hep-ph] 9 Jan 2017

Phenomenological applications of QCD threshold resummation

Forward Jets with the CAL

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Studies of QCD Matter From E178 at NAL to CMS at LHC

HADRON FRAGMENTATION AT ULTRA HIGH ENERGIES - EFFECTS OF HIGH GLUON DENSITIES. Mark Strikman, PSU

Transcription:

Testing Saturation Physics with pa collisions at NLO Accuracy David Zaslavsky with Anna Staśto and Bo-Wen Xiao Penn State University January 24, 2014 Prepared for University of Jyväskylä HEP group seminar

Outline 1 1 Overview of the Color Glass Condensate Factorization Models Evolution Equations 2 Calculation of the NLO pa Cross Section Theoretical Calculation Numerics 3 Results and Analysis: Relation to Experimental Data Results Resummation 4 Conclusion

Color Glass Condensate Structure of Protons and Nuclei 2 x = 1 ln 1 x small x small Q ln Q2 Q 2 0 large Q

Color Glass Condensate Structure of Protons and Nuclei 2 x = 1 ln 1 x small x saturation small Q ln Q2 Q 2 0 large Q Saturation regime: gluon self-interactions become important

Color Glass Condensate Gluon Distributions 3 Goal: describe gluons in a proton or nucleus Integrated gluon distribution xg(x, Q 2 ) (at right) Unintegrated gluon distributions f(x, k 2 ): Weisäcker-Williams UGD and dipole UGD How to avoid unitarity violations at small x? g(x, Q 2 ) 200 150 100 50 extrapolation Q 2 = 100 GeV 2 data Q 2 = 10 GeV 2 0 10 8 10 4 10 0 x

Color Glass Condensate Why pa? 4 Saturation regime is ( ) λ x0 x = 1 ln 1 x small x saturation small Q ln Q2 Q 2 0 large Q Q 2 Q 2 s = ca 1/3 Q 2 0 x Heavy ions (large A) make saturation more accessible Light projectiles (protons) prevent QGP and medium effects

Color Glass Condensate pa Collisions 5 p + x pp p p h π Momentum fraction of identified particle k z z = p k A x gp A X Momentum fraction of projectile parton Y = rapidity of pion p = transverse momentum of detected pion snn = CM energy of proton and nucleus x p = p z s NN e Y Momentum fraction of target parton x g = p z s NN e Y 0 figure adapted from Dominguez et al. 2011.

Color Glass Condensate» Factorization Models Factorization 6 k T factorization Central rapidity Y 0 x p, x g 0.01 p + Projectile and target treated in same model x pp p p h h Hybrid model a A x gp A k z X Forward rapidity Y 3 to 6 x p x g 10 4 Projectile treated in parton model Target treated as color glass condensate a Dumitru, Hayashigaki, and Jalilian-Marian 2005.

Color Glass Condensate» Factorization Models Factorization 6 k T factorization Central rapidity Y 0 x p, x g 0.01 p + Projectile and target treated in same model x pp p p h h Hybrid model a A x gp A k z X Forward rapidity Y 3 to 6 x p x g 10 4 Projectile treated in parton model Target treated as color glass condensate a Dumitru, Hayashigaki, and Jalilian-Marian 2005.

Color Glass Condensate» Factorization Models Hybrid Model 7 Cross section in the hybrid formalism: d 3 σ dy d 2 = ( dz dx p z 2 x xf i(x, µ)d h/i (z, µ)f x, p ) P(ξ)(...) z i Parton distribution (initial state projectile) Gluon distribution (initial state target) Fragmentation function (final state) Kinematic factors A p + xppp xgp A k z p h h X

Color Glass Condensate» Evolution Equations Evolution Equations 8 Fundamental tool of CGC: Balitsky-JIMWLK equations W Y [ρ] = 1 d 2 [x ]d 2 δ [y ] Y 2 δρ a Y (x ) χ δ ab(x, y ) δρ b Y (y ) W Y (ρ) S (2) Y (x y ) Y = N cα s π N c d 2 b 2π (x y ) 2 (x b ) 2 (y b ) 2 [ S (2) Y (x y ) S (2) Y (x b )S (2) Y (y b ) BK equation (large N c limit) used in practice (here LO) ]

Color Glass Condensate» Evolution Equations BK Equation 9 S (2) Y (r ) = N cα s d 2 b [ ] Y π 2π K S (2) Y (r ) S (2) Y (s )S (2) Y (t ) y where t K = b r2 s 2 +α s (rc corrections) + t2 }{{} LO r s S (2) Y is the position space CGC gluon distribution x

Color Glass Condensate» Evolution Equations Initial Conditions 10 BK (or JIMWLK) gives evolution in rapidity; initial conditions are unknown and must be determined via fits GBW MV ( ) S (2) Y (r ) = exp r2 Q2 s 4 [ ( S (2) Y (r ) = exp r2 Q2 s ln e + 4 AAMQS S (2) Y (r ) = exp [ (r2 Q2 s) γ 4 etc. ( ln e + 1 r Λ MV 1 r Λ MV )] )]

Color Glass Condensate» Summary Recap: Ingredients of the CGC 11 Hybrid factorization p + xppp p h h k z xgp A X A Evolution equation S (2) Y (r ) = N cα s d 2 b [ ] Y π 2π K S (2) Y (r ) S (2) Y (s )S (2) Y (t ) with free parameters: choice of terms included in kernel choice of form of initial condition choice of parameters in initial condition

NLO pa Cross Section Previous Calculations 12 Dumitru and Jalilian-Marian (2002) Dumitru, Hayashigaki, and Jalilian-Marian (2005) Fujii et al. (2011) Albacete et al. (2013) Rezaeian (2013) Staśto, Xiao, and Zaslavsky (2013) (our project) Gluon dist Cross section GBW MV/AAMQS LO LO BK rc BK inel NLO b-cgc NLO BK other NLO

NLO pa Cross Section Previous Calculations 12 Dumitru and Jalilian-Marian (2002) Dumitru, Hayashigaki, and Jalilian-Marian (2005) Fujii et al. (2011) Albacete et al. (2013) Rezaeian (2013) Staśto, Xiao, and Zaslavsky (2013) (our project) Gluon dist Cross section GBW MV/AAMQS LO LO BK rc BK inel NLO b-cgc NLO BK other NLO

NLO pa Cross Section Previous Calculations 12 Dumitru and Jalilian-Marian (2002) Dumitru, Hayashigaki, and Jalilian-Marian (2005) Fujii et al. (2011) Albacete et al. (2013) Rezaeian (2013) Staśto, Xiao, and Zaslavsky (2013) (our project) Gluon dist Cross section GBW MV/AAMQS LO LO BK rc BK inel NLO b-cgc NLO BK other NLO

NLO pa Cross Section Previous Calculations 12 Dumitru and Jalilian-Marian (2002) Dumitru, Hayashigaki, and Jalilian-Marian (2005) Fujii et al. (2011) Albacete et al. (2013) Rezaeian (2013) Staśto, Xiao, and Zaslavsky (2013) (our project) Gluon dist Cross section GBW MV/AAMQS LO LO BK rc BK inel NLO b-cgc NLO BK other NLO

NLO pa Cross Section Previous Calculations 12 Dumitru and Jalilian-Marian (2002) Dumitru, Hayashigaki, and Jalilian-Marian (2005) Fujii et al. (2011) Albacete et al. (2013) Rezaeian (2013) Staśto, Xiao, and Zaslavsky (2013) (our project) Gluon dist Cross section GBW MV/AAMQS LO LO BK rc BK inel NLO b-cgc NLO BK other NLO

NLO pa Cross Section Previous Calculations 12 Dumitru and Jalilian-Marian (2002) Dumitru, Hayashigaki, and Jalilian-Marian (2005) Fujii et al. (2011) Albacete et al. (2013) Rezaeian (2013) Staśto, Xiao, and Zaslavsky (2013) (our project) Gluon dist Cross section GBW MV/AAMQS LO LO BK rc BK inel NLO b-cgc NLO BK other NLO

NLO pa Cross Section» Theoretical Calculation Full NLO Cross Section 13 Complete NLO corrections to the cross section for pa h + X: 1 d 3 σ dy d 2 p = S jk = + α s 2π + α s 2π dzdξ z 2 [ xqi (x, µ) xg(x, µ) ] d 2 r (2π) 2 S(2) d 2 r Y (r )H (0) (2π) 2 S(2) 2jk Y (r )H (1) 2jk [ Sqq S qg S gq d 2 s d 2 t (2π) 2 S (4) Y (r, s, t )H (1) 4jk + etc. S gg ] [ ] Dh/qi (z, µ) D h/g (z, µ) LO dipole NLO dipole NLO quadrupole Note: we also use S (4) Y (r, s, t ) S (2) Y (s )S (2) Y (t ) 1 Chirilli, Xiao, and Yuan 2012.

NLO pa Cross Section» Theoretical Calculation Sample Fenyman Diagrams 14 LO real virtual p + p + p + A A A p + p + Squared amplitudes for qq channel A p + A p + A A p + p + A A

NLO pa Cross Section» Theoretical Calculation Factorization Scale Dependence 15 All parts depend on factorization scale µ F or renormalization scale µ R (where we set µ F = µ R = µ) Theory Sum of perturbative series independent of µ In practice: hope NLO corrections reduce µ dependence More on this later...

NLO pa Cross Section» Numerics Master Formula 16 Numerical integration does not deal with delta functions and plus prescriptions. These have to be eliminated manually. Each term can be split up into a singular portion (regulated by a plus prescription) F s, a portion proportional to a delta function F d, and a normal portion F n. 1 τ = dz 1 τ z 1 τ [ ] Fs (z, ξ) dξ + F n (z, ξ) + F d (z, ξ)δ(1 ξ) (1 ξ) + dz 1 τ dy z τ [ Fs (z, ξ) F s (z, 1) z(1 τ) 1 ξ 1 [ ( + dz F s (z, 1) ln 1 τ z τ ] + F n (z, ξ) ) ] + F d (z, 1)

NLO pa Cross Section» Numerics Regularization 17 Some terms of quadrupole hard factors take a form like H (n) 4ji = Ae ik t δ(1 ξ) 1 [ e dξ P (ξ iχ(ξ )k r ) 0 r 2 δ (2) (r ) d 2 r e ik ] r r 2 Position space: regularization is necessary F (n) d2 ij (z, 1, r ) = A (2π) 3 ( ) n αs S 2π z 2 1 S (4) Y (0, r, r )e ik r i x p f i (x p, µ)d h/i (z, µ) 0 dξ P (ξ ) ln 1 χ(ξ )

NLO pa Cross Section» Numerics Regularization 17 Some terms of quadrupole hard factors take a form like H (n) 4ji = Ae ik t δ(1 ξ) 1 [ e dξ P (ξ iχ(ξ )k r ) 0 r 2 δ (2) (r ) d 2 r e ik ] r r 2 Position space: regularization is necessary F (n) d4ij (z, 1, s, t ) = A (2π) 4 ( ) n αs S 2π z 2 [ S (4) Y (r, s, t ) S (4) ] Y (0, t, t ) 1 0 i x p f i (x p, µ)d h/i (z, µ) e ik t dξ P (ξ ) e iχ(ξ )k r r 2

NLO pa Cross Section» Numerics Regularization 17 Some terms of quadrupole hard factors take a form like H (n) 4ji = Ae ik t δ(1 ξ) 1 [ e dξ P (ξ iχ(ξ )k r ) 0 r 2 Momentum space: use identity δ (2) (r ) d 2 r e ik ] r r 2 d δ 2 2 r (r ) r 2 e ik r 1 r 2 e iξ k r = 1 d 2 k r 4π e ik ln (k ξ k ) 2 k 2

NLO pa Cross Section» Numerics Transformation to Momentum Space 18 Multidimensional Fourier integrals suffer from large numerical instabilities d 2 r S (2) Y (r )e ik r (...) d 2 s S (4) Y (r, s, t )e ik r (...) Easiest solution: transform to momentum space to remove phase factors F (k ) = 1 (2π) 2 d 2 r S (2) Y (r )e ik r = 1 2π 0 dr S (2) Y (r )J 0 (k r ) This offloads the numerical instabilities into the Fourier transform of the gluon distribution

NLO pa Cross Section» Numerics Transformation to Momentum Space 18 Multidimensional Fourier integrals suffer from large numerical instabilities d 2 r S (2) Y (r )e ik r (...) d 2 s S (4) Y (r, s, t )e ik r (...) Alternate solution: algorithms for direct evaluation of multidimensional Fourier integrals exist, but this requires a lot of coding We have not explored this

NLO pa Cross Section» Numerics Evaluation Errors 19 Many sources of error Inaccuracy of Fourier integrals Monte Carlo statistical error Always the possibility for bugs in the code! Two parallel implementations of selected parts (esp. qq channel): Mathematica, for rapid prototyping C++, for execution speed

Results and Analysis Experiments 20 RHIC: BRAHMS PHENIX STAR 2000-2006 2000-now 2000-now Small x Charged particles Hadrons LHC: ATLAS CMS ALICE 2011-now 2011-now 2011-now General General + Muons Heavy Ions

Results and Analysis» Results RHIC Comparison to Data 21 BRAHMS η = 2.2, 3.2 STAR η = 4 [ GeV 2 ] d 3 N dηd 2 p 10 1 10 1 10 3 10 5 η = 2.2 η = 3.2 ( 0.1) 10 2 10 3 10 4 10 5 LO NLO data 10 7 0 1 2 3 10 6 1 1.2 1.4 1.6 1.8 2 p [GeV] p [GeV]

Results and Analysis» Results RHIC Comparison to Data 21 BRAHMS η = 2.2, 3.2 STAR η = 4 [ GeV 2 ] d 3 N dηd 2 p 10 1 10 1 10 3 10 5 low p : decent match η = 2.2 η = 3.2 ( 0.1) 10 2 10 3 10 4 10 5 LO NLO data 10 7 0 1 2 3 p [GeV] 10 6 1 1.2 1.4 1.6 1.8 2 p [GeV]

Results and Analysis» Results RHIC Comparison to Data 21 BRAHMS η = 2.2, 3.2 STAR η = 4 [ GeV 2 ] d 3 N dηd 2 p 10 1 10 1 10 3 10 5 10 7 high p : negative! 0 1 2 3 η = 2.2 η = 3.2 ( 0.1) 10 2 10 3 10 4 10 5 10 6 LO NLO data 1 1.2 1.4 1.6 1.8 2 p [GeV] p [GeV]

Results and Analysis» Results Comparison of Gluon Distributions 22 [ GeV 2 ] [ GeV 2 ] d 3 N dηd 2 p d 3 N dηd 2 p 10 1 GBW 10 3 10 7 S (2) xg = exp [ r2 4 Q2 0 ( x0 xg ) λ ] 10 1 BK 10 3 10 7 0 1 2 3 p [GeV] [ S (2) xg = exp r2 4 Q2 0( x0 xg MV ) ( )] λ ln e + 1 Λr rcbk 0 1 2 3 p [GeV]

Results and Analysis» Results µ Dependence 23 LO NLO (fixed) NLO (running) 10 2 [ GeV 2 ] d 3 N dηd 2 p 10 3 10 4 10 5 LHC at η = 6.375 RHIC at η = 4.0 10 6 0 2 4 6 8 10 (µ/p ) 2

Results and Analysis» Resummation Sources of Negativity 24 [ GeV 2 ] d 3 N dηd 2 p 10 0 LO qq and gg 10 1 10 2 10 3 10 4 10 5 10 6 0.5 1 1.5 2 2.5 3 3.5 p [GeV] Plot shows magnitude of channel contribution Coloring indicates where value is Negative Positive Negativity comes from NLO diagonal channels: qq and gg

Results and Analysis» Resummation Sources of Negativity 24 [ GeV 2 ] d 3 N dηd 2 p 10 0 NLO qq 10 1 10 2 10 3 10 4 10 5 10 6 0.5 1 1.5 2 2.5 3 3.5 p [GeV] Plot shows magnitude of channel contribution Coloring indicates where value is Negative Positive Negativity comes from NLO diagonal channels: qq and gg

Results and Analysis» Resummation Sources of Negativity 24 [ GeV 2 ] d 3 N dηd 2 p 10 0 NLO gg 10 1 10 2 10 3 10 4 10 5 10 6 0.5 1 1.5 2 2.5 3 3.5 p [GeV] Plot shows magnitude of channel contribution Coloring indicates where value is Negative Positive Negativity comes from NLO diagonal channels: qq and gg

Results and Analysis» Resummation Sources of Negativity 24 [ GeV 2 ] d 3 N dηd 2 p 10 0 NLO gq 10 1 10 2 10 3 10 4 10 5 10 6 0.5 1 1.5 2 2.5 3 3.5 p [GeV] Plot shows magnitude of channel contribution Coloring indicates where value is Negative Positive Negativity comes from NLO diagonal channels: qq and gg

Results and Analysis» Resummation Sources of Negativity 24 [ GeV 2 ] d 3 N dηd 2 p 10 0 NLO qg 10 1 10 2 10 3 10 4 10 5 10 6 0.5 1 1.5 2 2.5 3 3.5 p [GeV] Plot shows magnitude of channel contribution Coloring indicates where value is Negative Positive Negativity comes from NLO diagonal channels: qq and gg

Results and Analysis» Resummation Candidate Resummation Procedure 25 Cross section in large p limit: d 3 σ qq dy d 2 α sn c S 1 p 4π 2 d 3 σ gg dy d 2 α sn c S p 2π 2 τ 1 τ dz z 2 D q(z) Q2 s k 4 dz z 2 D q(z) Q2 s k 4 Dominant contribution comes from τ 1 ξ 1 because ξ τ 1 1 τ z 1 set ξ = 1: x = x 0 = τ z, xq(x) = x 0q(x 0 ) 1 τ z dξ xq(x)j q (ξ) x 0 q(x 0 ) and likewise for gluon channel 1 τ z dξ xq(x)j q (ξ) dξ xq(x)j g (ξ) x 0 dξ J q (ξ) = x 0 q(x 0 )I q (x 0 )

Results and Analysis» Resummation Candidate Resummation Procedure 25 Cross section in large p limit: d 3 σ qq dy d 2 α sn c S 1 p 4π 2 d 3 σ gg dy d 2 α sn c S p 2π 2 τ 1 τ dz z 2 D q(z) Q2 s x 0 q(x 0 )I q (x 0 ) k 4 dz z 2 D q(z) Q2 s x 0 g(x 0 )I g (x 0 ) 10 k 4 I q (x 0 ) and I g (x 0 ) grow logarithmically as x 0 1 leading to large negative contributions at high p 0 0.2 0.4 0.6 0.8 1 0 10 4 ln(1 x 0 ) x 0

Results and Analysis» Resummation Candidate Resummation Procedure 25 Cross section in large p limit: d 3 σ qq dy d 2 α sn c S 1 p 4π 2 d 3 σ gg dy d 2 α sn c S p 2π 2 τ 1 τ dz z 2 D q(z) Q2 s x 0 q(x 0 )I q (x 0 ) k 4 dz z 2 D q(z) Q2 s x 0 g(x 0 )I g (x 0 ) Exponential resummation: add correction term 1 [ ( dz S z 2 D q(z) Q2 s x 0 q(x 0 ) exp c α ) sn c 4π 2 I q(x 0 ) c α ] sn c 4π 2 I q(x 0 ) 1 τ k 4 c is an empirical constant k 4

Results and Analysis» Resummation Resummation Results 26 BRAHMS dau η = 2.2 µ 2 = 10 GeV 2 to 50 GeV 2 BRAHMS dau η = 3.2 µ 2 = 10 GeV 2 to 50 GeV 2 [ GeV 2 ] d 3 N dηd 2 p 10 4 10 1 10 2 10 5 10 4 10 1 10 2 10 5 LO NLO c = 3 c = 10 data 10 8 0.5 1 1.5 2 2.5 3 3.5 p [GeV] 10 8 0 1 2 3 p [GeV] (note: slightly wrong)

Conclusion Summary 27 We have the first numerical implementation of the complete NLO pa h + X cross section Good: Bad: Matches data at low p Reduces µ dependence Negative at high p Resummation to the rescue? We ll see...

Acknowledgments Thanks to: Tuomas Lappi, my host Anna Staśto, my Ph.D. advisor Bowen Xiao, our collaborator Feng Yuan, for many useful discussions Work supported by US DOE OJI grant No. DE-SC0002145, Polish NCN grant DEC-2011/01/B/ST2/03915, and the Sloan Foundation.

Supplemental slides

Supplemental slides Quark-quark terms 28 S qq = + αs 2π d 2 r (2π) 2 S(2) Y (r )H (0) 2qq + αs 2π d 2 s d 2 t (2π) 2 S (4) Y (r, s, t )H (1) 4qq d 2 r (2π) 2 S(2) Y (r )H (1) 2qq H (0) 2qq = e ik r δ(1 ξ) ( H (1) 2qq = C F P qq(ξ) e ik r + 1 ) ξ 2 e ik r /ξ ln c2 0 r 2 3C µ2 F e ik r c 2 0 δ(1 ξ) ln r 2 k2 H (1) 4qq = 4πNce ik r 1 ξ i {e ξ k (x b ) 1 + ξ2 1 x b (1 ξ) + ξ (x b ) 2 y b (y b ) 2 1 δ(1 ξ) dξ 1 + ξ 2 [ e i(1 ξ)k (y b ) 0 (1 ξ ) + (b y ) 2 δ (2) (b y ) d 2 r e ik r r 2 ]}

Supplemental slides Gluon-gluon terms d 2 r S gg = (2π) 2 S(2) Y (r )S (2) Y (r )H (0) 2gg + αs 2π + αs d 2 s d 2 t 2π (2π) 2 S (2) Y (r )S (2) Y (s )S (2) Y (t )H (1) 6gg d 2 r (2π) 2 S(2) Y (r )H (1) 2gg + αs 2π d 2 r (2π) 2 S(2) Y (r )H (1) 2q q 29 H (0) 2gg = e ik r δ(1 ξ) [ H (1) 2gg = 2ξ 2(1 ξ) Nc + (1 ξ) + ξ ( 11 + 2ξ(1 ξ) + 6 2N ) ] f T R δ(1 ξ) 3N c ln c2 ( 0 µ 2 r 2 e ik r + 1 k ξ ) ( ξ 2 e i r 11 3 4N ) f T R N cδ(1 ξ)e ik r ln 3N c H (1) 2q q = 8πN f T R e ik (y b ) δ(1 ξ) 1 [ dξ [ξ 2 + (1 ξ ) 2 e iξ k (x y ) ] 0 (x y ) 2 δ (2) (x y ) d 2 r e ik r ] r 2 { H (1) 6gg = 16πNce ik r e i k (y ξ b ) [1 ξ(1 ξ)] 2 1 x y (1 ξ) + ξ 2 (x y ) 2 b y (b y ) 2 1 [ δ(1 ξ) dξ ξ 0 (1 ξ + 1 ] [ ) + 2 ξ (1 ξ e iξ k (y b ) ) (b y ) 2 δ (2) (b y ) d 2 r e ik r ]} r 2 c 2 0 r 2 k2

Supplemental slides Quark-gluon terms 30 S gq = αs 2π + αs 2π d 2 r (2π) 2 S(2) Y (r )[H (1,1) 2gq + S(2) Y (r )H (1,2) 2gq ] d 2 s d 2 t (2π) 2 S (4) Y (r, s, t )H (1) 4gq H (1,1) 2gq H (1,2) 2gq = Nc 2 1 ξ 2 e ik r /ξ 1 ξ [ 1 + (1 ξ) 2 ] ln c2 0 r 2 µ2 = Nc 2 e ik r 1 [ 2 ] 1 + (1 ξ) ln c2 0 ξ r 2 µ2 H (1) 4gq = 4πNce ik r /ξ ik t 1 [ 2 ] r 1 + (1 ξ) ξ r 2 t t 2

Supplemental slides Gluon-quark terms 31 S qg = αs 2π + αs 2π d 2 r (2π) 2 S(2) Y (r )[H (1,1) 2qg + S(2) Y (r )H (1,2) 2qg ] d 2 s d 2 t (2π) 2 S (4) Y (r, s, t )H (1) 4qg H (1,1) 2qg = 1 2 e ik r [ (1 ξ) 2 + ξ 2]( ln c2 ) 0 r 2 1 µ2 H (1,2) 2qg = 1 2ξ 2 e ik r /ξ[ (1 ξ) 2 + ξ 2] ( ln c2 ) 0 r 2 1 µ2 H (1) 4qg = 4πe ik r ik t /ξ (1 ξ)2 + ξ 2 r ξ r 2 t t 2