W/Z production with 2b at NLO

Similar documents
Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Associated Higgs Production with Bottom Quarks at Hadron Colliders

Vector boson + jets at NLO vs. LHC data

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

VH production at the LHC: recent theory progress

Interpreting Collider Data

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

W/Z + jets and W/Z + heavy flavor production at the LHC

(a) (b) (c) 284 S. Zhu / Physics Letters B 524 (2002)

t th production at the LHC

Discovery potential of the SM Higgs with ATLAS

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

The Standar Model of Particle Physics Lecture IV

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab

Diphoton production at LHC

Precision Jet Physics At the LHC

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

INCLUSIVE D- AND B-MESON PRODUCTION

Matrix Elements for the LHC. J. Huston Michigan State University, IPPP Durham

arxiv: v1 [hep-ph] 9 Dec 2013

Precision Calculations for Collider Physics

Parton-parton luminosity functions for the LHC

NLM introduction and wishlist

s = 2 TeV σ [ pb ] s = 4 TeV [ GeV ] M H pp l ν bb + X pp ν ν bb + X pp l l bb + X total cross section higgs signal total cross section

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

Top production measurements using the ATLAS detector at the LHC

Understanding Parton Showers

ATLAS Discovery Potential of the Standard Model Higgs Boson

Physics at the Large Hadron Collider

Constraining total width of Higgs boson at the LHC. Kajari Mazumdar Tata Institute of Fundamental Research Mumbai

Theoretical Predictions For Top Quark Pair Production At NLO QCD

High p T physics at the LHC Lecture III Standard Model Physics

W + W Production with Many Jets at the LHC

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations

Measurement of photon production cross sections also in association with jets with the ATLAS detector

THEORY OUTLOOK AFTER THE CMS HIGGS WIDTH CONSTRAINT. Felix Yu Fermilab

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

Towards Jet Cross Sections at NNLO

QCD predictions for Higgs physics

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

t th/th: Theory Overview

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY

arxiv:hep-ph/ v1 25 Sep 2002

Highlights of top quark measurements in hadronic final states at ATLAS

Status of Higgs and jet physics. Andrea Banfi

Perturbative QCD and NLO Monte Carlo Simulations TASI John Campbell MS 106, PO Box 500 Fermilab, Batavia IL

Investigation of Top quark spin correlations at hadron colliders

Higher Order QCD Lecture 2

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

ELECTROWEAK CORRECTIONS TO GAUGE BOSON AND TOP QUARK PRODUCTION AT HADRON COLLIDERS

arxiv: v1 [hep-ph] 3 Jul 2010

Hadron Collider Physics, HCP2004, June 14-18

Higgs boson signal and background in MCFM

Recent QCD results from ATLAS

QCD in gauge-boson production at the LHC "

Powheg in Herwig++ for SUSY

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

WZ di-boson production at CMS

Understanding Top and Its Backgrounds

QCD Measurements at DØ

Recent developments in the POWHEG BOX

K-factors and jet algorithms. J. Huston

Recent Results on Jet Physics and α s

THREE-JET CALCULATION AT NLO LEVEL FOR HADRON COLLIDERS

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration

Z boson studies at the ATLAS experiment at CERN. Giacomo Artoni Ph.D Thesis Project June 6, 2011

m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV)

Higher order QCD corrections to the Drell-Yan process

Prospect for WW Study with Early ATLAS Data

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

arxiv:hep-ph/ v1 10 Nov 2006

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents

arxiv: v1 [hep-ph] 19 Dec 2017

ATLAS NOTE January 4, 2010

Pedro Teixeira-Dias. Higgs Overview

Theory Summary of the SM and NLO Multi-leg WG

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations

Weak boson scattering at the LHC

Standard Model Measurements at ATLAS

AN INTRODUCTION TO QCD

Outline. Heavy elementary particles. HERA Beauty quark production at HERA LHC. Top quark production at LHC Summary & conclusions

Measurement of W-boson Mass in ATLAS

The Madgraph/MadEvent generator: an update.

Fully exclusive NNLO QCD computations

Physics at Hadron Colliders Part II

Higgs + Multi-jets in Gluon Fusion

Jets at LHCb. Gavin Salam. LHCb, CERN, 21 January CERN, Princeton & LPTHE/CNRS (Paris)

Constraints on Higgs-boson width using H*(125) VV events

Introduction to high p T inclusives

News in jet algorithms:

Multiple Parton Interactions Physics

Recent developments on Perturbative QCD (Part I)

Cross sections for SM Higgs boson production

Gavin Salam. CERN, Princeton & LPTHE/CNRS (Paris) Work performed with Mathieu Rubin and Sebastian Sapeta, arxiv:

Searching for the Higgs at the Tevatron

Geneva: Event Generation at NLO

Introduction to high p T inclusives

Transcription:

W/Z production with b at NLO Laura Reina Eugene, September 9 Motivations: main background to W H/ZH associated production; single-top production; H/A + b b and other signals of new physics; t t production; several non-standard model signatures. New studies: Wb b/zb b at NLO, b massive (F. Febres Cordero, L. R., D. Wackeroth) W + b-jet, FNS and 5FNS merged at NLO (J. Campbell, K. Ellis, Outlook F. Febres Cordero, F. Maltoni, L. R., D. Wackeroth, S. Willenbrock)

Wb b/zb b production at NLO, some history... V partons (-loop massless amplitudes) (Bern, Dixon, Kosower (97)) p p, pp V b b (at NLO, FNS, = ) (Campbell, Ellis (99)) p p, pp V b + j (at NLO, 5FNS) (Campbell, Ellis, Maltoni,Willenbrock (5,7)) p p, pp Wb b (at NLO, FNS, ) (Febres Cordero, L.R., Wackeroth (6,9)) p p, pp Zb b (at NLO, FNS, ) (Febres Cordero, L.R., Wackeroth (8,9)) p p, pp W + b-jet (at NLO, 5FNS+FNS with ) (Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (8))

Wb b/zb b production with full effects q q LO Feynman diagrams: W b b q q q Wb b q W b b Subprocesses at LO: Wb b: q q Wb b Zb b: q q Zb b and Zb b: gg Zb b q q Zb b gg Zb b

Including O(α s ) corrections { ˆσ ij NLO (x, x, µ) = αs(µ) fij LO (x, x ) + α } s(µ) π fnlo ij (x, x, µ) ˆσ LO ij (x, x, µ) + δˆσ NLO ij (x, x, µ), δˆσ NLO ij = ˆσ virt ij + ˆσ real ij. Virtual Corrections: consist of one-loop diagrams interfered with corresponding LO amplitude Wb b: one subprocess, q q Wb b Zb b: two subprocesses, q q Zb b and gg Zb b Real Corrections: consist of tree level diagrams with one extra parton Wb b + k: two subprocess, q q Wbb + g and q( q)g Wb b + q ( q ) Zb b + k: three subprocesses, q q Zb b + g, gg Zb b + g and q( q)g Zb b + q( q)

W/Z + b-jets Febres Cordero, L.R., Wackeroth (6-9) We use the k T jet algorithm with and study two cases: Inclusive Cross Section: events with two (b + b) or three (b + b + j) jets resolved contribute to the cross section. Exclusive Cross Section: only events with two (b + b) jets resolved contribute to the cross section. Same convention used by MCFM (used to obtain the results for = ). b-jet kinematical cuts: Transverse momentum of the b-jets: p t > p t, min (5-5 GeV) for both b and b jets. Pseudorapidity: η < η max (-.5) for both b and b jets. PDF: for LO results we use -loop evolution of α s and CTEQ6L, while for NLO results -loop evolution of α s and CTEQ6M.

Tevatron: summary of LO and NLO total cross sections massive and massless calculation, setting µ r = µ f = M V + (V = W, Z). Cross Section, Wb b (pb) [ratio] = (pb) [ratio] σ LO.[-].8[-] σ NLO inclusive.[.5].5[.5] σ NLO exclusive.6[.].8[.] Cross Section, Zb b (pb) [ratio] = (pb) [ratio] σ LO.[-].7[-] σ NLO inclusive.[.5].6[.5] σ NLO exclusive.75[.].[.7]

Tevatron: scale dependence and theoretical uncertainty at NLO 5 LO NLO inclusive NLO exclusive 5 LO NLO inclusive NLO exclusive (pb) (pb) cuts: p t > 5 GeV η < µ = M w / +.5 µ f /µ cuts: p t > 5 GeV η < µ = M Z / +.5 µ f /µ Wb b: Tevatron (PRD 7 (6) 7) Zb b: Tevatron (PRD 78 (8) 7) Bands obtained by varying both µ R and µ F between µ / and µ (with µ = + M V / (V = W, Z)). LO scale uncertainty %. Inclusive NLO scale uncertainty %. Exclusive NLO scale uncertainty %.

Wb b, scale dependence: LO vs NLO and massless vs massive (pb) 5 NLO massless NLO massive LO massless LO massive Inclusive case µ = M w / +.5 µ/µ (pb) 5 NLO _ massive qq initiated _ qg+qg initiated cuts: p t > 5 GeV η <.5 µ/µ σ (pb).5..5 NLO Inclusive NLO Exclusive σ = σ NLO - σ NLO * (σ LO / σ LO ) = = (pb) Exclusive case NLO massless NLO massive LO massless LO massive µ = M w / +.5 µ/µ (pb) NLO _ massive qq initiated _ qg+qg initiated cuts: p t > 5 GeV η <.5 µ/µ -.5 -. cuts: p t > 5 GeV η < µ = M w / +.5 µ/µ (PRD 78 (8) 7)

Zb b, scale dependence: LO vs NLO and massless vs massive (pb) 5.5.5.5 cuts: p t > 5 GeV η < NLO massless NLO massive LO massless LO massive.5.5 µ/µ (pb) 5 NLO _ massive qq initiated gg initiated qg initiated Inclusive case µ = M Z / +.5 µ/µ σ (pb).6. µ = M Z / + Inclusive case Esclusive case σ = σ NLO - σ NLO * (σ LO / σ LO ) = = (pb).5.5.5 cuts: p t > 5 GeV η < NLO massless NLO massive LO massless LO massive.5.5 µ/µ (pb) NLO massive qq initiated gg initiated qg initiated Exclusive case µ = M Z / +.5 µ/µ -. -.6 cuts: p t > 5 GeV η <.5 µ/µ (PRD 78 (8) 7)

Zb b: b distributions, massive vs massless.5 dσ/db (fb/gev) LO massless LO massive µ r = µ f = M Z + =.7 GeV =. GeV dσ(massive) / dσ(massless).5 LO ratio cuts: p t > 5 GeV η < 6 9 5 8 m _ bb (GeV) 6 9 5 8 m _ bb (GeV).5 dσ/db (fb/gev) NLO massless NLO massive µ r = µ f = M Z + Inclusive case =.6 pb =. pb dσ(massive) / dσ(massless).5 NLO ratio cuts: p t > 5 GeV η < 6 9 5 8 m _ bb (GeV) 6 9 5 8 m _ bb (GeV) (PRD 78 (8) 7)

- - - - Wb b/zb b, b distributions: testing rescaling LO NLO dσ / db (fb/gev) dσ / db (fb/gev) cuts: p t > 5 GeV - η < - - µ = M w + dσ NLO(Inc) - dσ NLO(Inc) * (dσ LO / dσ LO ) = = dσ NLO(Exc) - dσ NLO(Exc) * (dσ LO / dσ LO ) = = - 5 5 b - (GeV) dσ / db (fb/gev) dσ / db (fb/gev) - - - - dσ NLO(Inc) - dσ NLO(Inc) * (dσ LO / dσ LO ) = = µ = M Z + dσ NLO(Exc) - dσ NLO(Exc) * (dσ LO / dσ LO ) = = cuts: p t > 5 GeV η < 6 9 5 8 b - (GeV) Wb b: PRD 7 (6) 7 Zb b: PRD 78 (8) 7 Clear effect in the low b invariant mass region.

LHC: scale dependence and theoretical uncertainty at NLO p t > 5 GeV η <.5 p t > 5 GeV η <.5 σ [pb] 7 6 5 W + bb µ = M W + 5 5 5 W + bb NLO Inc NLO Exc LO 5 σ [pb] 5 W - bb 5 W - bb Total qq qg 5.5 µ/µ.5 µ/µ (PRD 8:5, 9) NLO corrections very large, particularly for inclusive production; large NLO scale-dependence (LO: %, NLO inc : 5%, NLO exc : %), induced by the opening of the qg( qg) Wb b + q ( q ) channel; theoretical uncertainty not only given by scale-dependence!

5 pt>5 GeV Zbb 8 pt>5 GeV NLO Inc NLO Exc LO 6 σ [pb] 5 µ = M Z + Total gg qq qg.5 µ/µ.5 µ/µ NLO corrections still large, particularly for inclusive production; more moderate NLO scale-dependence (LO: 5%, NLO inc : %, NLO exc : 5%): qg( qg) Zb b + q( q) channel not as dominant.

W + b b = = p b > 5 GeV T pb > 5 GeV T s = TeV σ LO (pb). +.6. σ NLO,inc (pb).6 +7.8 5.6 σ NLO,exc (pb) 8.6 +.7.6 5.5 +.7. 6. +8. 6.. +.7.8 6.9 +...6 +.6.5 8.7 +.8.77 s = TeV 6.67 +.. 5. +.6.7 8.67 +.85.87 σ LO (pb) 9.8 +..5 σ NLO,inc (pb) 5.9 + 8.7 σ NLO,exc (pb) 7.8 +..5. +..7 56. + 9.6. +.5.8 9. +.6.. +6...9 +.6. 9.6 +.6.. +5.9.5. +.6.5 Zb b p b > 5 GeV T pb > 5 GeV T = = s = TeV σ LO (pb) 55. +6 σ NLO,inc (pb) 8.5 + σ NLO,exc (pb) 5. +..7 57.6 +8 8.5 + 5.5 +...6 +7.6 5. 6. +.9.6.6 +.. s = TeV 5. +8. 5.9 6. +6. 5..7 +..6 σ LO (pb) +6 σ NLO,inc (pb) 5 + 7 σ NLO,exc (pb) 88. +.. 6 + 8 + 9 9. +..6 6.8 +. 9.6 66.6 +8.8 8..7 +..6 6.8 +.7 9.9 66. +.5 9..5 +..9

LHC: some interesting NLO distributions... 5 5 5 6 8 6 8 dσ / dp t [ pb / GeV ] - p t > 5 GeV η >.5 E CM = TeV LO NLO Inc NLO Exc W + bb _ - - - k-factor 5 5 5 Leading b-jet p t b,l [ GeV ] 6 8 6 8 b,sl Subleading b-jet p t [ GeV ]

dσ / dp t [ pb / GeV ] - - 5 5 5 p t > 5 GeV η >.5 E CM = TeV 6 8 6 8 Zbb _ LO NLO Inc NLO Exc - - k-factor 5 5 5 Leading b-jet p t b,l [ GeV ] 6 8 6 8 b,sl Subleading b-jet p t [ GeV ] NLO distributions cannot be rescaled from LO ones via a K-factor; large corrections in particular for Wb b and in the inclusive case.

5 5 5 5 5 5 dσ / dp t W + [ pb / GeV ] - - p t > 5 GeV η >.5 W + bb _ LO NLO Inc NLO Exc Z dσ / dp t [ pb / GeV ] - - p t > 5 GeV η >.5 Zbb _ LO NLO Inc NLO Exc E CM = TeV E CM = TeV - k-factor 5 5 5 W + p t [ GeV] - k-factor 5 5 5 p t Z [ GeV ]

Comparison with massless b-quark results... dσ / db - [ pb / GeV ] - 6 8 6 8 p t > 5 GeV η >.5 W - bb _ LO NLO Inc NLO Exc LO massless NLO Inc massless NLO Exc massless dσ / dr bb - [ pb / R bb - ] 8 6 8.5.5.5 p t > 5 GeV η >.5 E CM = TeV LO NLO Inc NLO Exc LO massless NLO Inc massless NLO Exc massless W - bb _ - E CM = TeV ratios..8.6 6 8 6 8 b - [ GeV ] ratios..9.8.7.5.5.5 R bb -

6 8 6 8.5.5.5 dσ / db - [ pb / GeV ] p t > 5 GeV η >.5 E CM = TeV Zbb _ LO NLO Inc NLO Exc LO massless NLO Inc massless NLO Exc massless dσ / dr bb - [ pb / R bb - ] 8 6 p t > 5 GeV η >.5 E CM = TeV Zbb _ LO NLO Inc NLO Exc LO massless NLO Inc massless NLO Exc massless ratios -...9.8.7 6 8 6 8 b - [ GeV ] ratios..9.8.5.5.5 R bb -

W + b-jet Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (PRD 79:, 9) Consistently combine FNS ( ) and 5FNS ( = ) at NLO in QCD: q b b b b q q + O(α s ) corrections q W W. q q Wb b at tree level and one loop ( ). q q Wb bg at tree level ( ). bq Wbq at tree level and one loop ( = ). bq Wbq g and bg Wbq q at tree level ( = ) 5. gq Wb bq at tree level ( ) avoiding double counting: b g q b q b q q b b(x, µ) = α s π ln µ m b x dy y P qg ( x y) g(y, µ) W indeed: a fully consistent NLO 5FNS calculation (S-ACOT scheme). W

improved scale dependence: NLO corrections to gq Wb bq partially included; need to keep for final state b quarks (one b quark has low p T ) four signatures studied: exclusive/inclusive, with single and double-b jets, using p j T > 5 GeV, ηj <.5, cone algorithm with : Wb, W(b b) (exclusive) Wb and Wb + j, W(b b) and W(b b) + j (inclusive) which can be combined to obtain different backgrounds,... both contributions play important complementary roles (Tevatron/LHC, inclusive/exclusive);

NLO results at a glance: Exclusive cross sections (pb) Collider Wb W(b b) TeV W + (= W ) 8.+.6[-.5]=8.6.7-.[-.]=.7 LHC W +.+8.[.6]=88..7+.7[.7]=. LHC W 9.8+9.[.6]=59. 7.+6.5[6.5]=.7 Inclusive cross sections (pb) Collider Wb + X W(b b) + X TeV W + (= W ).77+.[.77]=.7.7+.9[.9]=.56 LHC W + 5.6+6.[68.9]=89.7 5.+5.9[5.9]=6. LHC W 9.+88.[.6]=7.5 8.9+.6[.6]=.5 first number: Processes + (pure FNS) second number: Processes + + 5 (pure 5FNS plus qg Wb b + q ) number in square brackets: Process 5 alone (qg Wb b + q )

Ongoing and future activity on W/ZQ Q production... Provide input to experimental studies: D, CDF: W + b study (see Febres Cordero s and Thomson s talks), Higgs and single-top working groups; CMS Higgs working group: provide parton level distributions with specific cuts and interface with NLO parton shower Monte Carlo (POWHEG): study Z + b as background to H ZZ inclusive production; study Z + b and Z + b to measure b-pdf. ATLAS study of WH with H b b in boosted regime (Butterworth, Piacquadio, et al.). Z + b-jet using both FNS with and 5FNS NLO calculations: bg Zb at tree level and one loop (with = ); bg Zb + g, bq Zb + q (with = ); q q, gg Zb b at tree level and one loop (with ); q q, gg Zb b + g and gq(g q) Zb b + q( q) (with ). quite different pattern: one loop corrections to q q, gg b bz are now a piece of the NNLO 5FNS calculation, comparable to two-loop corrections to (and double parton emission from) bg Zb (?)

Possible to use Z + b to measure b-pdf? reduce the PDF error in H + b production? Resum large final state collinear logs from g b b splitting in Wg Wb b (and Zg Zb b) (with S. Dawson). Need too investigate NLO corrections to qg( qg) Wb b + q ( q )? (now within reach) more in D. Wackeroth s talk tomorrow