Massive Quarks in Vincia. M. Ritzmann in collaboration with A. Gehrmann-De Ridder and P. Skands

Similar documents
A shower algorithm based on the dipole formalism. Stefan Weinzierl

arxiv: v2 [hep-ph] 1 Dec 2011

NLO merging in t t+jets 1

Pythia and Vincia. P. Skands (Fermilab) with W. Giele, D. Kosower, S. Mrenna, M. Sandhoff, T. Sjöstrand, D. Wicke

Towards Jet Cross Sections at NNLO

NNLO antenna subtraction with two hadronic initial states

arxiv: v1 [hep-ph] 3 Jul 2010

Antenna Subtraction at NNLO

Multijet merging at NLO

Parton Showers. Stefan Gieseke. Institut für Theoretische Physik KIT. Event Generators and Resummation, 29 May 1 Jun 2012

Heavy flavour in Pythia 8 Heavy flavour in showers only

Event Generator Physics 2

Status of Monte-Carlo event generators

Recent Advances in QCD Event Generators

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

arxiv: v1 [hep-ex] 15 Jan 2019

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

Experiences on QCD Monte Carlo simulations: a user point of view on the inclusive jet cross-section simulations

Matching and merging Matrix Elements with Parton Showers II

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

Understanding Parton Showers

Coulomb gluons and colour evolution

Coulomb gluons and colour evolution

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005

Jet Matching at Hadron Colliders. Johan Alwall National Taiwan University

Introduction to Monte Carlo Event Generation and Parton Showering CTEQ School 2018, Mayagüez, Puerto Rico

NNLO antenna subtraction with one hadronic initial state

On QCD jet mass distributions at LHC

Power corrections to jet distributions at hadron colliders

arxiv: v3 [hep-ph] 2 Mar 2018

New results for parton showers

Recent developments. Monte-Carlo Event Generators

QCD Phenomenology at High Energy

Electroweak Radiation in Antenna Showers

2. HEAVY QUARK PRODUCTION

arxiv: v1 [hep-ph] 12 Dec 2015

arxiv:hep-ph/ v1 2 Oct 2001

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

arxiv: v1 [hep-ph] 5 Nov 2014

QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions

Stefano Carignano 12/2010. Phenomenology of particle production in pp collisions

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec

Event shapes in hadronic collisions

A color matrix element corrected parton shower and multiplet color bases

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN

Towards N c = 3 parton showers

Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = 13 TeV with the ATLAS Detector at the LHC

update to 29/11/2012

Transverse Energy-Energy Correlations in Next-to-Leading Order in α s at the LHC

Introduction to Monte Carlo Event Generators

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron

Lectures on Parton Showers

Automation of NLO computations using the FKS subtraction method

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

Determination of the strong coupling constant based on NNLO+NLLA results for hadronic event shapes and a study of hadronisation corrections

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Sherpa, Event Generator for the LHC. Stefan Höche Dresden University of Technology

arxiv: v1 [hep-ph] 12 Jan 2008

Anomalous gauge couplings in SHERPA

Recent QCD results from ATLAS

Non-perturbative effects for QCD jets at hadron colliders

Powheg in Herwig++ for SUSY

Measurement of the jet production properties at the LHC with the ATLAS Detector

Sudakov form factor from Markov property

Merging MEs and the parton shower with SHERPA

arxiv:hep-ph/ v2 22 Oct 2001

Particle Physics. Lecture 11: Mesons and Baryons

arxiv: v1 [hep-ph] 18 Dec 2014

Higher Order QCD Lecture 1

Fooling Around with the Sudakov Veto Algorithm 1. LU-TP MCnet arxiv:yymm.nnnn [hep-ph] Leif Lönnblad 1. 1 Introduction

Pino and Power Corrections: from LEP to LHC

Higgs Pair Production: NLO Matching Uncertainties

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

Z+jet production at the LHC: Electroweak radiative corrections

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

Matching Matrix Elements and Parton Showers with HERWIG and PYTHIA

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006

Matching & Merging of Parton Showers and Matrix Elements

Two Early Exotic searches with dijet events at ATLAS

arxiv:hep-ex/ v1 19 Jun 1999

arxiv:hep-ex/ v1 16 Jun 2004

Writing your own Monte Carlo Integrator

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Introduction to Monte Carlo generators - II

Tests of Pythia8 Rescattering Model

General-purpose event generators Issues Survey. Improving precision & modelling Matching ME & PS UE & intrinsic pt PDFs for MC Conclusions?

Standard Model of Particle Physics SS 2012

arxiv: v2 [hep-ph] 7 Dec 2009

Parton shower evolution with subleading color

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Study of Charm Fragmentation at H1

arxiv: v1 [hep-ph] 9 Jan 2013

Multiple Parton-Parton Interactions: from pp to A-A

QCD, Colliders & Jets - HW II Solutions. x, x

PoS(LHC07)034. Dijet correlations in pp collisions at RHIC

Simulating High Energy Collisions

Multiplicity distributions for jet parton showers in the medium

Transcription:

Massive Quarks in Vincia M. Ritzmann in collaboration with A. Gehrmann-De Ridder and P. Skands

Outline Introduction - Parton Showers Vincia - Principles Masses in Vincia

Energy Scales at a Collider Energy (log scale) 1 TeV m Z m ρ

Energy Scales at a Collider Energy (log scale) 1 TeV fixed order full pqcd (fixed order) few partons m Z m ρ

Energy Scales at a Collider Energy (log scale) 1 TeV m Z m ρ

Energy Scales at a Collider Energy (log scale) 1 TeV m Z m ρ

Energy Scales at a Collider Energy (log scale) 1 TeV m Z parton shower approximate pqcd (all orders) many partons m ρ

Energy Scales at a Collider Energy (log scale) 1 TeV m Z + π + n m ρ K + π + π 0

Energy Scales at a Collider Energy (log scale) 1 TeV m Z m ρ confined QCD phenomenological models very many hadrons

Energy Scales at a Collider Energy (log scale) 1 TeV fixed order full pqcd (fixed order) few partons m Z parton shower approximate pqcd (all orders) many partons m ρ confined QCD phenomenological models very many hadrons

Parton Showers - Questions What governs the emission pattern? How are emissions ordered? How is colour coherence accounted for?

Examples of Parton Showers

Examples of Parton Showers based on ordering coherence

Examples of Parton Showers Herwig++ [1] based on 1 2 Altarelli-Parisi splitting functions P q qg ordering angular ordering coherence shower evolution [1] M. Bähr, S. Gieseke, M. A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Plätzer, P. Richardson, M.H. Seymour, A, Sherstnev, J. Tully, B. R. Webber arxiv:0803.0883

Examples of Parton Showers Herwig++ [1] Sherpa [2] based on 1 2 Altarelli-Parisi splitting functions 1 2 Altarelli-Parisi splitting functions ordering coherence angular ordering particle virtuality angular ordering superimposed [2] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter arxiv: 0811.4622

Examples of Parton Showers Herwig++ [1] Sherpa [2] Sherpa [3] based on 1 2 Altarelli-Parisi splitting functions 1 2 Altarelli-Parisi splitting functions 2 3 Catani-Seymour dipoles [a, b] ordering particle virtuality transverse momentum pt coherence angular ordering angular ordering superimposed pt ordering + 2 3 kinematics + C.-S. dipoles [a] S. Catani, M. H. Seymour arxiv: hep-ph/9602277 [b] Z. Nagy, D. E. Soper arxiv: hep-ph/0601021 [3] S. Schumann, F. Krauss arxiv: 0709.1027

Examples of Parton Showers Herwig++ [1] Sherpa [2] Sherpa [3] Pythia 8 [4] based on 1 2 Altarelli-Parisi splitting functions 1 2 Altarelli-Parisi splitting functions 2 3 Catani-Seymour dipoles [a, b] 1 2 A-P s. functions (2 3 kinematics) ordering particle virtuality transverse momentum pt transverse momentum pt coherence angular ordering angular ordering superimposed pt ordering + 2 3 kinematics + C.-S. dipoles pt ordering + 2 3 kinematics [4] T. Sjöstrand, S. Mrenna, P. Skands arxiv: 0710.3820

Vincia W. Giele, D. Kosower, P. Skands arxiv:0707.3652

Vincia W. Giele, D. Kosower, P. Skands arxiv:0707.3652 based on 2 3 splittings (antenna cascade, as pioneered by Ariadne [1] ) [1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

based on 2 3 splittings (antenna cascade, as pioneered by Ariadne [1] ) for other projects inspired by Ariadne, see e.g. J.-C. Winter, F. Krauss arxiv: 0712.3913 A. J. Larkoski, M. E. Peskin arxiv: 0908.2450 [1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

Vincia W. Giele, D. Kosower, P. Skands arxiv:0707.3652 based on 2 3 splittings (antenna cascade, as pioneered by Ariadne [1] ) flexible with regards to ordering variable [1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

Vincia W. Giele, D. Kosower, P. Skands arxiv:0707.3652 based on 2 3 splittings (antenna cascade, as pioneered by Ariadne [1] ) flexible with regards to ordering variable closely related to antenna subtraction [2] [1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988 [2] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover arxiv:hep-ph/0505111

Vincia W. Giele, D. Kosower, P. Skands arxiv:0707.3652 based on 2 3 splittings (antenna cascade, as pioneered by Ariadne [1] ) flexible with regards to ordering variable closely related to antenna subtraction [2] implemented for e + -e - collisions at present [1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988 [2] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover arxiv:hep-ph/0505111

Goals of Vincia a parton shower which improves the description of QCD radiation facilitates matching with fixed order results helps estimating its theory error can be used from within Pythia 8

Antenna Shower - Cartoon at what value of the ordering variable Q will each antenna emit? p I p q p K p q

Antenna Shower - Cartoon determined by evolution integral I A p 2 ant,q 2 start,q 2 emit p q p ant = p q + p I qg qgg qg qq q p I p ant = p I + p K gg ggg gg gq q p q p ant = p q + p K qg qgg qg qq q p K

Antenna Shower - Cartoon determine scales p I p q Q 1 Q 2 p q Q 3 p K

Antenna Shower - Cartoon determine scales p I p q Q 1 Q 2 p q Q 3 p K Q 2 >Q 1 >Q 3 split {p I,p K } {p i,p j,p k }

Dipole-Antenna Shower - Cartoon given Q2, determine 3-particle invariants sij, sjk y jk 1.0 0.8 i k 0.6 0.4 i j j 0.2 Q (s ij,s jk )=Q 2 j soft j k 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij = 2 p ip j p 2 ant

Dipole-Antenna Shower - Cartoon from sij, sjk, determine pi, pj, pk with momentum mapping p I p q p K p q

Dipole-Antenna Shower - Cartoon from sij, sjk, determine pi, pj, pk with momentum mapping p i p q p j p q p k replace

Dipole-Antenna Shower - Cartoon restart p i p q p j p q p k

Evolution Integral I A I A p 2 ant,q 2 start,q 2 emit = 1 λ Q 2 start Q 2 emit ds ij ds jk α s (s ij,s jk ) 4π C ijk A IK ijk (s ij,s jk,...) s jk Q start Q emit s ij

Evolution Integral I A I A p 2 ant,q 2 start,q 2 emit = 1 λ Q 2 start Q 2 emit ds ij ds jk α s (s ij,s jk ) 4π C ijk A IK ijk (s ij,s jk,...) Q : evolution variable s ij =2p i p j C ijk : colour factor A IK ijk (p 2 ant,s ij,s jk,m 2 i,m 2 j,m 2 k) : antenna function λ = λ(p 2 ant,m 2 I,m 2 K)=(2p I p K ) 2 (2m I m K ) 2

Evolution Variables several options implemented y jk 1.0 m D 2 min(y ij,y jk ) y jk 1.0 p T 4 y ij y jk 0.8 0.5 0.8 0.5 0.6 0.6 0.4 0.2 md = 0.75 0.25 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij 0.4 0.2 pt = 0.75 0.25 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij

Antenna Functions I A p 2 ant,q 2 start,q 2 emit = 1 λ Q 2 start Q 2 emit ds ij ds jk α s (s ij,s jk ) 4π C ijk A IK ijk (s ij,s jk,...) reproduce (quasi-)collinear splitting functions / soft eikonals in unresolved limits parts which do not contribute in unresolved limits are irrelevant for fixed order, but influence the shower handle on shower uncertainty

Masses - needed? secondary production of beauty and charm are highly relevant to phenomenology during the shower evolution, quark masses will become important inevitably want to be consistent with the production of heavy mesons

Masses - needed? s = 91.28 GeV e + e B-hadron(s) + X, 1 N dn dx B 4 3 2 1 PRELIMINARY SLD collaboration Phys.Rev.D65:092006,2002 Erratum-ibid.D66:079905,2002 Vincia (errors only statistical) b massless no hadronisation 0 0 0.2 0.4 0.6 0.8 1 x B =2E B-hadron /E cm

Masses in Vincia A. Gehrmann-De Ridder, MR, P. Skands in preparation masses have to be implemented in phase space antenna functions [1] momentum mapping [1] A. Gehrmann-De Ridder, MR arxiv:0904.3297

Massive Antennae: QQ QgQ massless m Q = m Q =0.15 p 2 ant y jk 1.0 y jk y jk 1.0 y jk 0.8 0.1 0.8 0.1 500 500 0.6 0.1 y ij 0.6 0.1 y ij 0.4 A QQ QgQ (y ij,y jk ) 0.4 A QQ QgQ (y ij,y jk ) 50 = 5 = 5 0.2 0.2 50 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij

Massive Antennae: massless Qg Qgg m Q =0.15 p 2 ant y jk 1.0 y jk y jk 1.0 y jk 0.8 0.1 0.8 0.1 500 500 0.6 0.1 y ij 0.6 0.1 y ij 0.4 A Qg Qgg (y ij,y jk ) 0.4 A Qg Qgg (y ij,y jk ) 0.2 50 = 5 0.2 50 = 5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij

Massive Antennae: massless gg gqq m Q =0.15 p 2 ant y jk 1.0 y jk 1.0 0.8 0.8 0.6 0.05 0.6 0.05 0.4 A gg gqq (y ij,y jk ) = 0.5 0.4 A gg gqq (y ij,y jk ) = 0.5 0.2 0.2 5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij

Massive Antenna Mapping conserves four-momentum keeps all particles on-shell

Massive Antenna Mapping conserves four-momentum } keeps all particles on-shell one parameter remaining

Massive Antenna Mapping conserves four-momentum keeps all particles on-shell } one parameter remaining generalises massless antenna mapping [1] treats emitters of identical mass symmetrically [1] D. A. Kosower arxiv:hep-ph/0212097

Massive Antenna Mapping {p I,p K } {p i,p j,p k }, p 2 I = M 2 I,p 2 i = m 2 i,... p I = xp i + rp j + zp k antenna mapping given by r = p2 ant + MI 2 M K 2 2 p 2 ant s 2 + IK (s min IK )2 2 p 2 ant 2 m j m k } (s jk s min jk ) (s ij s min ) ij s jk s min jk + s ij s min ij

1.0 y jk Mapping - Examples m i = m k =0.15 p 2 ant, m j =0 0.8 parent configuration p K p I 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 y ij

Masses - needed? s = 91.28 GeV e + e B-hadron(s) + X, 1 N dn dx B 4 3 2 1 PRELIMINARY SLD collaboration Phys.Rev.D65:092006,2002 Erratum-ibid.D66:079905,2002 Vincia (errors only statistical) b massive no hadronisation 0 0 0.2 0.4 0.6 0.8 1 x B =2E B-hadron /E cm

Masses - needed? s = 91.28 GeV e + e B-hadron(s) + X, 1 N dn dx B 4 3 2 1 PRELIMINARY SLD collaboration Phys.Rev.D65:092006,2002 Erratum-ibid.D66:079905,2002 Vincia (errors only statistical) b massive default Pythia 8 hadronisation 0 0 0.2 0.4 0.6 0.8 1 x B =2E B-hadron /E cm

Conclusions Vincia has been extended to include quark masses in electron-positron collisions next: finish tests and tune hadronisation on LEP data next-to-next: extend to initial state partons