NEUTRINOS ON ICE THE SEARCH FOR THE COSMIC-RAY SOURCES FE KRAUSS, J. WILMS, M. KADLER, M. KRETER

Similar documents
NEUTRINOS ON ICE 3LAC COUNTERPAR TS TO ICECUBE NEUTRINOS ABOVE 100 TEV

Ernie and Bert in the radio. TANAMI blazars in the IceCube neutrino fields

Short Blazar Flares for Current Neutrino Telescopes

Modelling the Variability of Blazar Jets

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR)

AGILE and Blazars: the Unexpected, the Unprecedented, and the Uncut

Spatially Coincident Fermi-LAT γ Ray Sources to IceCube ν µ Events

PoS(NEUTEL2017)079. Blazar origin of some IceCube events

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

VLBI and γ-ray studies of TANAMI radio galaxies. Roberto Angioni, MPIfR Bonn EVN symposium, September 2016 St. Petersburg, Russia

Active Galactic Nuclei in the MeV-GeV band (first results from Fermi)

Flaring Active Galactic Nuclei: the view from Fermi-LAT

10 Years. of TeV Extragalactic Science. with VERITAS. Amy Furniss California State University East Bay

The extragalactic γ-ray sky as observed by Fermi. What have we learned? New discoveries and open questions

High-z Blazar SEDs Clues to Evolution in the Early Universe. Hongjun An Roger Romani on behalf of the Fermi-LAT Collaboration

MAGIC observations of VHE gamma rays from the flaring blazar TXS coincident with high-energy neutrino IceCube A

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

Long term multi-wavelength variability studies of the blazar PKS

MWL. A Brief Advertisement Before Your Regularly Scheduled Program

Fermi: Highlights of GeV Gamma-ray Astronomy

Misaligned AGN with Fermi-Lat:

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Radio and gamma-ray emission in Faint BL Lacs

The Extragalactic Gamma-Ray View of AGILE and Fermi

VERITAS detection of VHE emission from the optically bright quasar OJ 287

The Broadband Emission Properties of AGN Jets

Investigating the jet structure and its link with the location of the high-energy emitting region in radio-loud AGN

Not only typical flaring blazars in the Fermi gamma-ray sky. The strange cases of SBS and PKS

Time-resolved SEDs of Blazar Flares

Gamma-ray observations of blazars with the Whipple 10 m telescope

Time-dependent search of neutrino emission from bright gamma-ray flaring blazars with the ANTARES telescope

Highlights from the VERITAS AGN Observation Program

The third Fermi LAT AGN catalogue and beyond

Origin of X-rays in blazars

VERITAS detection of VHE emission from the optically bright quasar OJ 287

TeV γ-ray observations with VERITAS and the prospects of the TeV/radio connection

The connection between millimeter and gamma-ray emission in AGNs

Gamma-ray Observations of Blazars with VERITAS and Fermi

CTA / ALMA synergies. C. Boisson. Zech

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

Scientific Highlights from AGN Observations with the MAGIC Telescope

g and n from TeV blazars

Discovery of a New Gamma-Ray Binary: 1FGL J

SIMILARITY AND DIVERSITY OF BLACK HOLE SYSTEMS View from the Very High Energies

Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

Understanding High Energy Neutrinos

VERITAS a Status Report. Nepomuk Otte on behalf of the VERITAS Collaboration

M87 in context: the radio gamma-ray connection in misaligned AGNs

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008

The radio/gamma-ray connection in Active Galactic Nuclei in the Fermi era

Towards Neutrino Astronomy with IceCube+ANTARES+KM3NeT

Models for the Spectral Energy Distributions and Variability of Blazars

Recent Results from VERITAS

Results from the ANTARES neutrino telescope

Non-Blazar Gamma-ray Active Galactic Nuclei seen by Fermi-LAT. C.C. Teddy Cheung Naval Research Lab/NRC on behalf of the Fermi-LAT Collaboration

VHE emission from radio galaxies

Investigation of Obscured Flat Spectrum Radio AGN with the IceCube Neutrino Observatory

Diagnostics of Leptonic vs. Hadronic Emission Models for Blazars Prospects for H.E.S.S.-II and CTA Markus Böttcher North-West University

arxiv: v1 [astro-ph.he] 12 Jul 2018

Observations of Active Galactic Nuclei at very high energies with H.E.S.S.

Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years

GLAST and beyond GLAST: TeV Astrophysics

Antonio Capone Univ. La Sapienza INFN - Roma

Gamma-ray Astrophysics

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016

Determining the TeV Gamma-Ray Emission Region in the Relativistic Jet of M87 using TeV and Radio Monitoring

Recent Observations of Supernova Remnants

Variability of Extragalactic VHE γ-ray Emitters

Status of TeV AGN Studies

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

Blazar science with mm-vlbi. Marcello Giroletti, Monica Orienti, Filippo D Ammando on behalf of the Fermi-LAT collaboration

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program

Cosmic Ray Electrons and GC Observations with H.E.S.S.

Very High Energy gamma-ray radiogalaxies and blazars

Gamma-Rays from Radio Galaxies: Fermi-LAT

Global evlbi observations of the first gamma-ray RL NLS1

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

VERS UNE ASTRONOMIE NEUTRINO AVEC IceCube+ANTARES+KM3NeT

The blazar Mrk 421: a short multifrequency review

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

High Energy Emission. Brenda Dingus, LANL HAWC

OBSERVATIONS OF VERY HIGH ENERGY GAMMA RAYS FROM M87 BY VERITAS

Status of the MAGIC telescopes

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

Coronal geometry at low mass- accretion rates from XMM and NuSTAR spectra. Felix Fürst Caltech for the NuSTAR AGN physics and binaries teams

Neutrino Astronomy with IceCube at the Earth's South Pole

Magnetic Fields in Blazar Jets

AGILE and multi-wavelength campaigns on blazars!

arxiv: v1 [astro-ph.he] 13 Jul 2018


Gamma-ray emission from active galactic nuclei

Blazars in gamma-ray views

PoS(SWIFT 10)142. The Swift-XRT observations of HBL Source 1ES

Multi-instrument, multiwavelength. energy sources with the Virtual Observatory

How bright can the brightest neutrino source be?

RESOLVING HIGH ENERGY UNIVERSE USING STRONG GRAVITATIONAL LENSING. Anna Barnacka Einstein Fellow at Harvard

Polarization Swings Reveal Magnetic Energy Dissipation in Blazars

arxiv: v1 [astro-ph.he] 2 Jul 2010

Transcription:

NEUTRINOS ON ICE THE SEARCH FOR THE COSMIC-RAY SOURCES FE KRAUSS, J. WILMS, M. KADLER, M. KRETER FELICIA.KRAUSS@UVA.NL

COSMIC RAYS 2a

COSMIC RAYS 1896: Henri Becquerel discovery of radioactivity 1909: Theodor Wulf ascends Eiffel tower with electrometer 1912: Victor Hess balloon flight 5.3 km (17400 feet) Flux of charged particles from space 3a

COSMIC RAYS Energy Flux Tanabashi et al. (2018) 3b

WHERE ARE COSMIC RAYS COMING FROM? Energy Flux Galactic Extragalactic Tanabashi et al. (2018) 3c

ACTIVE GALACTIC NUCLEI (AGN) 4a

ACTIVE GALACTIC NUCLEI (AGN) Supermassive black hole 10 6 10 9 M Accretion disk Relativistic jet 5a

Blazar flat-spectrum radio quasar (FSRQ) BL Lac Radio galaxy 5b

ACTIVE GALACTIC NUCLEI (AGN) 0.05 pc 10000 AU 5c

HERCULES A 500 kpc 1 10 11 AU 6a

FINDING CR SOURCES 7a

How do we find sources of cosmic rays? Neutrinos AGN jets: multiwavelength information 8a

νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 radio optical X-ray γ-ray 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 Krauß F. et al. (2014) 9a

νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA TANAMI Planck 2MASS WISE UVOT BAT XRT Fermi/LAT 2FGL 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 Krauß F. et al. (2014) 9b

νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA TANAMI Planck Synchrotron 2MASS WISE UVOT BAT XRT Fermi/LAT 2FGL 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 Krauß F. et al. (2014) 9c

νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA TANAMI Planck 2MASS WISE UVOT Big Blue Bump BAT XRT Fermi/LAT 2FGL 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 Krauß F. et al. (2014) 9d

νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA TANAMI Planck 2MASS WISE UVOT XRT BAT Fermi/LAT 2FGL Leptonic (SSC, EC)? Hadronic? 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 Krauß F. et al. (2014) 9e

π 0 p p UV γ 10a

γ-ray γ π 0 p p UV γ Mannheim (1993), Mannheim (1995), Mücke (2000) 10b

π + n p UV γ Mannheim (1993), Mannheim (1995), Mücke (2000) 10c

ν µ ν e e + µ + ν µ π + e n ν e p? p UV γ The search for cosmic neutrinos Mannheim (1993), Mannheim (1995), Mücke (2000) 10d

THE SEARCH FOR COSMIC NEUTRINOS c IceCube 11a

ICECUBE RESULTS IceCube Collaboration (2013, 2013, 2014, 2015) 12a

ICECUBE RESULTS 16 neutrinos IceCube Collaboration (2013, 2013, 2014, 2015) 12b

PEV NEUTRINOS : IC 14 AND IC 20 IceCube Collaboration (2013) 13a

IDENTIFYING NEUTRINO COUNTERPARTS Step 1: Find possible counterparts 14a

IDENTIFYING NEUTRINO COUNTERPARTS 15a

IDENTIFYING NEUTRINO COUNTERPARTS Six bright blazars coincident with PeV neutrinos No clear association 16a

IDENTIFYING NEUTRINO COUNTERPARTS Step 2: Calculate neutrino emission 17a

IDENTIFYING NEUTRINO COUNTERPARTS νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA BAT TANAMI WISE Ced Planck UVOT XRT 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 Fermi/LAT 2FGL 10 24 10 47 10 46 10 45 νlν [erg s 1 ] Mannheim (1993), Mannheim (1995), Mücke (2000) Fν (E ν ) de ν = F γ (E) de 17b

ASSUMPTIONS OF NEUTRINO CALCULATION All of high-energy emission is of hadronic origin All of the neutrinos emitted at one energy (delta-peak) Calculated numbers are maximum possible number 18a

R EPEAT ATCA TANAMI Ced Planck 2MASS WISE UVOT BAT XRT 2MASS WISE OM UVOT BAT XMM /pn XRT Fermi/LAT 2FGL ATCA TANAMI Ced Planck BAT WISE UVOT Fermi/LAT 2FGL XRT 1047 1047 10 1045 1 0.1 1046 1044 100 BAT INTEGRAL Fermi/LAT XRT 2FGL 10 48 10 47 10 46 E 14 10 45 ATCA TANAMI Planck 1045 E 20 0302-623 1043 2MASS WISE UVOT 1046 1045 E 20 0235-618 TANAMI 2MASS WISE UVOT BAT XRT Fermi/LAT 2FGL E 20 0308-611 ATCA TANAMI Ced Planck BAT WISE UVOT XRT Fermi/LAT 2FGL 1047 10 1046 1 0.1 νlν [erg s 1 ] νfν [10 12 erg s 1 cm 2 ] ATCA TANAMI Ced Planck 1046 0.01 1045 0.01 1653-329 109 Fermi/LAT 2FGL νlν [erg s 1 ] νfν [10 12 erg s 1 cm 2 ] 100 FOR ALL COUNTERPARTS 1012 1015 1018 1021 Frequency [Hz] 1024 E 14 1714-336 109 1012 1015 1018 1021 Frequency [Hz] Krauß et al. (2014) 1024 E 14 1759-396 109 1012 1015 1018 1021 Frequency [Hz] 1024 19a

RESULTS 20a

RESULTS FOR IC 14 & IC 20 source events 0235 618 0.19 +0.04 0.04 0302 623 0.06 +0.01 0.01 0308 611 0.14 +0.05 0.05 1653 329 0.86 +0.10 0.10 1714 336 0.46 +0.10 0.12 1759 396 0.23 +0.05 0.04 Total 1.9±0.4 Krauß et al. (2014) 21a

RESULTS FOR IC 14 & IC 20 Correct order of magnitude of predicted neutrino events Calorimetrically blazars can explain IceCube events Large angular uncertainty complicated source identification Krauß et al. (2014) 21b

R ESULTS FOR IC 35 2 PeV event r50 = 15.9 IceCube Collaboration (2014) 22a

γ-ray flux F100 300000 MeV [10 6 cm 2 s 1 ] RESULTS FOR IC 35: VARIABILITY Kadler, Krauss et al. (2016), Nature Physics 2010 2010.5 2011 2011.5 2012 2012.5 2013 2013.5 2.5 2 1.5 1 0.5 0 55200 55400 55600 55800 56000 56200 56400 56600 MJD 23a

γ-ray flux F100 300000 MeV [10 6 cm 2 s 1 ] RESULTS FOR IC 35: VARIABILITY Kadler, Krauss et al. (2016), Nature Physics 2010 2010.5 2011 2011.5 2012 2012.5 2013 2013.5 2.5 2 1.5 1 0.5 0 55200 55400 55600 55800 56000 56200 56400 56600 MJD 23b

γ-ray flux F100 300000 MeV [10 6 cm 2 s 1 ] RESULTS FOR IC 35: VARIABILITY Kadler, Krauss et al. (2016), Nature Physics 2010 2010.5 2011 2011.5 2012 2012.5 2013 2013.5 2.5 2 1.5 1 0.5 0 55200 55400 55600 55800 56000 56200 56400 56600 MJD 23c

RESULTS FOR IC 35: SED νfν [erg s 1 cm 2 ] 10-9 10-10 10-11 10-12 10-13 ALMA ATCA LBA 2MASS WISE UVOT BAT INTEGRAL Fermi/LAT SMARTS XRT High-fluence outburst Short flare 2LAC range 10 49 10 48 10 47 10 46 νlν [erg s 1 ] χ 10 0-10 10 9 10 12 10 15 10 18 10 21 Frequency [Hz] 10 24 N ν = 5.7 (IceCube time range) Kadler, Krauß et al. (2016), Nature Physics 24a

RESULTS FOR IC 170922A 22 September 2017: ν alert from IceCube & coincident γ-ray flare from TXS 0506+056 (IceCube, Fermi-LAT et al., 2018) 25a

RESULTS FOR IC 170922A 22 September 2017: ν alert from IceCube & coincident γ-ray flare from TXS 0506+056 (IceCube, Fermi-LAT et al., 2018) 25b

RESULTS FOR IC 170922A 25c

RESULTS FOR IC 170922A Discovery by Y. Tanaka (Hiroshima University) Fast multiwavelength follow-up Detection in VHE with MAGIC TXS 0506+056 at z=0.34 (Paiano et al 2018) 26a

IC 170922A FOR 7 6.6 4 3 5.8 2 TXS 0506+056 1 5.4 0 5.0 4.6 PKS 0502+049 MAGIC PSF 78.4 78.0 77.6 77.2 76.8 76.4 1 Right Ascension 8 7 6 5.8 5 TXS 0506+056 4 5.4 3 2 5.0 PKS 0502+049 2 3 9 6.2 Declination Declination 6.2 MAGIC significance [σ] 5 10 original GCN Notice Fri 22 Sep 17 20:55:13 UT refined best-fit direction IC170922A IC170922A 50% - area: 0.15 square degrees IC170922A 90% - area: 0.97 square degrees 6.6 6 4.6 3FHL 3FGL 78.4 78.0 Fermi-LAT Counts/Pixel R ESULTS 1 0 77.6 77.2 76.8 76.4 Right Ascension Only one source consistent with this neutrino event IceCube, Fermi-LAT et al. (2018), Science 27a

CAVEATS AND PROBLEMS 28a

What about other sources? What do we know about outburst - neutrino associations? How certain are we about outburst associations? 29a

SIGNIFICANCE & SIGNALNESS IC 35 IC 170922A r 50 [ ] 15.9 1 E ν,total [TeV] 2003.7 290 Signalness 100% 56.5% Significance 1.9σ 3σ Neither association is significant! 30a

NEUTRINOS < 1 PEV 31a

NEUTRINOS > 100 TEV IC E deposited MJD α J2000.0 [ ] δ J2000.0 [ ] ang. morphology [TeV] res. 2 117 15.4 14.6 55351.4659661 282.6-28 25.4 Shower 4 165.4 19.8 14.9 55477.3930984 169.5-51.2 7.1 Shower 12 104.1 12.5 13.2 55739.4411232 296.1-52.8 9.8 Shower 13 252.7 25.9 21.6 55756.1129844 67.9 40.3 <1.2 Track 14 1040.7 131.6 144.4 55782.5161911 265.6-27.9 13.2 Shower 17 199.7 27.2 26.8 55800.3755483 247.4 14.5 11.6 Shower 20 1140.8 142.8 132.8 55929.3986279 38.3-67.2 10.7 Shower 22 219.5 21.2 24.4 55941.9757813 293.7-22.1 12.1 Shower 26 210.0 29.0 25.8 55979.2551750 143.4 22.7 11.8 Shower 30 128.7 13.8 12.5 33 384.7 46.4 48.6 35 2003.7 236.2 261.5 38 200.5 16.4 16.4 39 101.3 13.3 11.6 40 157.3 15.9 16.7 45 429.9 57.4 49.1 46 158.0 15.3 16.6 48 104.7 13.5 10.2 52 158.1 16.3 18.4 56115.7283574 103.2-82.7 8 Shower 56221.3424023 292.5 7.8 13.5 Shower 56265.1338677 208.4-55.8 15.9 Shower 56470.1103795 93.3 14 <1.2 Track 56480.6617877 106.2-17.9 14.2 Shower 56501.1641008 143.9-48.5 11.7 Shower 56679.2044683 219-86.3 <1.2 Track 56688.0702948 150.5-22.3 7.6 Shower 56705.9419933 213-33.2 8.1 Shower 56763.5448147 252.8-54 7.8 Shower Obtain multiwavelength SEDs for all 3LAC counterparts 32a

NEUTRINOS > 100 TEV IC events R 50 13 60 Galactic Plane 26 38 30 33 17 12h 46 8h 39 4h 0h 0-30 20h 22 2 14 16h 48 12h 40 4 20 30-60 45 12 52 35 3FGL sources Krauß et al., 2018, A&A accepted Calculate neutrino estimates N ν 33a

NEUTRINOS > 100 TEV N ν,max,all = 493 maximum number 34a

NEUTRINOS > 100 TEV N ν,max,all = 493 N ν,spec,all = 97 maximum number powerlaw neutrino spectrum 34b

NEUTRINOS > 100 TEV N ν,max,all = 493 N ν,spec,all = 97 N ν,f,all = 24.13 maximum number powerlaw neutrino spectrum ν flavors, blazar physics 34c

NEUTRINOS > 100 TEV N ν,max,all = 493 N ν,spec,all = 97 N ν,f,all = 24.13 maximum number powerlaw neutrino spectrum ν flavors, blazar physics Highest expected # neutrino: PKS 1830 211: 2.7 Only 2 sources above 1 ν Approach underestimates neutrino numbers: full sky 34d

NEUTRINOS > 100 TEV Full sky approximation: assume sources similar IC events R 50 13 60 Galactic Plane 26 38 30 33 17 12h 46 8h 39 4h 0h 0-30 20h 22 2 14 16h 48 12h 40 4 20 30-60 45 12 52 35 3FGL sources 5590.88 deg 2 /41253 deg 2 = 0.136 35a

NEUTRINOS > 100 TEV Full sky approximation: assume sources similar N ν,max,fullsky = 493/0.136 = 3637 maximum number 35b

NEUTRINOS > 100 TEV Full sky approximation: assume sources similar N ν,max,fullsky = 493/0.136 = 3637 maximum number N ν,spec,fullsky = 712 powerlaw neutrino spectrum 35c

NEUTRINOS > 100 TEV Full sky approximation: assume sources similar N ν,max,fullsky = 493/0.136 = 3637 maximum number N ν,spec,fullsky = 712 powerlaw neutrino spectrum N ν,f,fullsky = 178 ν flavors, blazar physics 35d

NEUTRINOS > 100 TEV Full sky approximation: assume sources similar N ν,max,fullsky = 493/0.136 = 3637 maximum number N ν,spec,fullsky = 712 powerlaw neutrino spectrum N ν,f,fullsky = 178 ν flavors, blazar physics 178» 10 (16) 35e

NEUTRINOS > 100 TEV νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA BAT TANAMI WISE Ced Planck UVOT XRT Fermi/LAT 2FGL 10 47 10 46 10 45 νlν [erg s 1 ] 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 36a

NEUTRINOS > 100 TEV νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA BAT TANAMI WISE Ced Planck UVOT XRT Fermi/LAT 2FGL 10 47 10 46 10 45 νlν [erg s 1 ] 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 36b

NEUTRINOS > 100 TEV νfν [10 12 erg s 1 cm 2 ] 100 10 1 0.1 0.01 ATCA BAT TANAMI WISE Ced Planck UVOT XRT Fermi/LAT 2FGL 10 47 10 46 10 45 νlν [erg s 1 ] 10 9 10 12 10 15 10 18 Frequency [Hz] 10 21 10 24 36c

NEUTRINOS > 100 TEV 10 cosmic events (/16): 8% of emission hadronic Considering unresolved blazars: 4% First constraint on hadronic contribution to SED Is this consistent with previous results? 36d

MULTIWAVELENGTH MODELING OF TXS 0506+056 Leptonic model (Gao et al., 2018; Keivani et al., 2018) 37a

MULTIWAVELENGTH MODELING OF TXS 0506+056 Hadronic model (Gao et al., 2018; Keivani et al., 2018) 37b

CONCLUSIONS AGN & blazars are best (U)HE cosmic ray candidates Two blazar outbursts coincident with neutrino detection First constraint of hadronicness of blazars 38a