Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality**

Similar documents
Dinitrogen fixation and residue nitrogen of different managed legumes and nitrogen uptake of subsequent winter wheat

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Meta-analysis the effect of nitrogen fertilizer on quantitative and qualitative characteristics of sugar beet

Effects of Weed Control Methods on the Growth and Yield of Cowpea (Vigna unguiculata (L.) Walp) under Rain-Fed Conditions of Owerri

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CS September 2018

Numbering Boundary Nodes

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Changes of CO 2 emission and labile organic carbon as influenced by rice straw and different water regimes

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Soil water content during and after plant growth influence nutrient availability and microbial biomass

CORRELATION ANALYSIS OF NUTRIENTS, ENZYMES, AND MICROBIAL BIOMASS IN SOILS WITH PHENOLICS OF Artemisia annua L.

Paul E. Nyren, Qingwu Xue, Ezra Aberle, Gordon Bradbury, Eric Eriksmoen, Mark

Constructive Geometric Constraint Solving

Present state Next state Q + M N

THE EFFECT OF SEED AND SOIL APPLIED SYSTEMIC INSECTICIDES ON APHIDS IN SORGHUM. Texas Agricultural Experiment Station, Nueces County, 2000

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

EE1000 Project 4 Digital Volt Meter

MANAGEMENT OF DISEASES OF INFLORESCENCE OF MANGO

Development of Microbial Biomass and Enzyme Activities in Mine Soils

1 Introduction to Modulo 7 Arithmetic

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Ammonium fixation and release by clay minerals as influenced by potassium

12. Traffic engineering

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Designing A Concrete Arch Bridge

QUESTIONS BEGIN HERE!

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Module 2 Motion Instructions

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Ashoka Sarker, Abul Kashem* and Khan Towhid Osman. Department of Soil Science, University of Chittagong, Chittagong 4331, Bangladesh.

Journal of Integrative Agriculture 2017, 16(0): Available online at ScienceDirect

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

WATER STRESS AFFECTS THE GERMINATION, EMERGENCE AND GROWTH OF DIFFERENT SORGHUM CULTIVARS

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

Section 3: Antiderivatives of Formulas

Journal of Solid Mechanics and Materials Engineering

Effect of some Sources and Rates of Nitrogen Fertilization on Growth and Leaf Mineral Content of Young Trees of Wonderful, Pomegranate

Bulgarian Journal of Agricultural Science, 13 (2007), National Centre for Agrarian Sciences

Walk Like a Mathematician Learning Task:

Garnir Polynomial and their Properties

WORKSHOP 6 BRIDGE TRUSS

SPATIO-TEMPORAL VARIATIONS IN PHYSIOCHEMICAL ATTRIBUTES OF ADIANTUM CAPILLUS VENERIS FROM SOONE VALLEY OF SALT RANGE (PAKISTAN)

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Original Research Article. Essubalew Getachew Seyum

QUESTIONS BEGIN HERE!

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

The Influence of Rhizobium and Arbuscular Mycorrhizal Fungi on Nitrogen and Phosphorus Accumulation by Vicia faba

Antioxidant enzymes and physiological traits of Vicia faba L. as affected by salicylic acid under salt stress

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Tangram Fractions Overview: Students will analyze standard and nonstandard

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

0.1. Exercise 1: the distances between four points in a graph

Chem 104A, Fall 2016, Midterm 1 Key

Comparison of Carcass Composition of Iranian Fat-tailed Sheep

TOPIC 5: INTEGRATION

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

Adding waves together. Overview. Fourier series. Fourier transforms. Animal magic. One dimensional example

Section 10.4 Connectivity (up to paths and isomorphism, not including)

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

EFFECTS OF SHADING ON SOME MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF BEGONIA SEMPERFLORENS

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

Reaction of certain malvaceae cultivars to meloidogyne incognita infection under greenhouse conditions

Analysis for Balloon Modeling Structure based on Graph Theory

The Effects of Temperature on the Development of Hemispherical Scale, Saissetia Coffeae (Walker)

Graph-Based Workflow Recommendation: On Improving Business Process Modeling

Journal of Great Lakes Research


Aquauno Video 6 Plus Page 1

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

C-201 Sheet Bar Measures 1 inch

Case Study VI Answers PHA 5127 Fall 2006

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Basis of test: VDE 0660, part 500/IEC Rated peak withstand current I pk. Ip peak short-circuit current [ka] Busbar support spacing [mm]

J. Appl. Environ. Biol. Sci., 1(12) , , TextRoad Publication

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Differential Performance of Lowland Rice Cultivars for Phosphorus Uptake and Utilization Efficiency under Hydroponic and Soil Conditions

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

Binomials and Pascal s Triangle

with n-butylamine and n-octylamine

A B C D E F G G. Figure to support Supplementary Data Table 4 Textures of opaque minerals DR (1) 50 m (1) 50 m (5) 50 m

Formal Concept Analysis

6202R. between SKY and GROUND. Statement sidewalk

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Emergence of Global Network Property based on Multi-agent Voting Model

Transcription:

Int. Agrophys., 216, 3, 165-172 oi: 1.1515/intg-215-81 Effts of long-trm us of iffrnt frming systms on som physil, hmil n miroiologil prmtrs of soil qulity** Ann M. Gj 1 *, Ew A. Czyż 3, n Anthony R. Dxtr 2 1 Dprtmnt of Agriulturl Miroiology, 2 Dprtmnt of Soil Sin n Ln Prottion, Institut of Soil Sin n Plnt Cultivtion, Stt Rsrh Institut, Czrtoryskih 8, 24-1 Pułwy, Poln 3 Dprtmnt of Soil Sin, Environmntl Chmistry n Hyrology, Univrsity of Rzszów, Zlwrowiz 8, 35-61 Rzszów, Poln Riv Frury 12, 215; pt Sptmr 28, 215 A s t r t. Th im of this stuy ws to ompr th ffts of iffrnt frming systms (orgni, intgrt, onvntionl n monoultur) on som soil proprtis s: ulk nsity, ontnts of rily-isprsil ly, orgni mttr n prtiult orgni mttr, n nzymti tivity msur in trms of th intnsity of fluorsin itt hyrolysis. Soil unr prmnnt grss ws us s ontrol. Th stuy ws onut on th 2 yrs lsting fil xprimnt. Smpls of Hpli Luvisol soil wr ollt twi yr on fils unr wintr wht from th lyrs of -5, 5-1, 15-2, n 3-35 m. Within rl soils th soil unr orgni frming ontin th grtst mount of orgni mttr, whih influn strongly th rily-isprsil ly ontnt, spilly in th lyr of 5-2 m. Th rily-isprsil ly ontnt in soil unr orgni frming ws 3 tims lowr, s ompr to th onvntionl n monoultur frming. Th highst ontnts of prtiult orgni mttr 6.2 n 3.5 mg g -1 ir ry soil, on vrg wr msur in th -5 m lyr of ontrol soil n soil unr orgni frming, rsptivly. Also, soil unr orgni frming n ontrol soil from th pth of -5 m show 2-2.5 tims grtr tivity of miroorgnisms in fluorsin itt hyrolysis thn soil unr onvntionl n monoultur frming. Inrs of onntrtion of orgni mttr in soil unr orgni frming rs soil ulk nsity. Sttistil nlysis show signifint orrltions twn stui prmtrs of soil qulity n onfirm thir fftivnss s initors of isturns in soil nvironmnt. K y w o r s: iffrnt frming systms, orgni mttr, soil ulk nsity, rily-isprsil ly, prtiult orgni mttr ontnt, fluorsin itt hyrolysis INTRODUCTION Agriulturl prti in Poln typilly uss onvntionl plough ultivtion for rl rop proution. Evlution of th ffts of iffrnt mngmnt systms on soil onition is ruil for monitoring n unrstning th impt of mngmnt prtis on soil proprtis n sustinility of soil proutivity (Askri n Holn, 215; Krln t l., 213; Król t l., 213; Mrtyniuk t l., 215). Th soil qulity onpt propos y Dorn n Prkin (1994) whih offrs n intgrt pproh of multipl initor proprtis togthr, in th ontxt of rop proution shoul fous on oth griulturl n nvironmntl sustinility s snsitiv initors of osystm funtions n stility. Soil orgni mttr (SOM) hs long n onsir th ky qulity ftor ffting th physil, hmil n iologil proprtis of soil. Orgni mttr in soil is oftn fin s sris of frtions with iffrnt rt of omposition (Dorn n Prkin, 1996; Rosll t l., 21). Blok n Skjmst (2) point out th strong rltionships of soil orgni mttr ontnt with soil txtur whih is th on of th most importnt ftors ffting onntrtion of OM in soil. Bulk nsity (BD) is mjor ftor in soil omption n will oviously hng lmost immitly following tillg-inu soil isturn. Intns oprtion of hvy mhinry n implmnts in th fil uss soil omption whih my inrs ulk nsity n ru th trnsporttion of wtr n ir through th soil. Consquntly, it ontriuts to th lin in nutrints ontnt in soil, whih in turn ls to rs in rop yil. Also, th ulk nsity tlls lot out th porosity sttus of soil (Dxtr t l., 28; Dorn n Prkin, 1996). *Corrsponing uthor -mil: Ann.Gj@iung.pulwy.pl **Th rsrh ws on unr Sttut Rsrh Projt 3.1.4 n prtly unr grnt PIB-IUNG 2.3 n 1.2, 211-215. 216 Institut of Agrophysis, Polish Amy of Sins

166 A.M. GAJDA t l. Among th physil frtions, th ly frtion is th most importnt omponnt of soil. Th ly frtion is fin s th frtion of soil prtils with fftiv imtrs of lss thn 2 µm. Cly is olloi frtion whih plys n importnt rol in th gluing togthr of lrgr prtils of soil n mking th rsulting ompoun prtils mor stl. In quous solution, ly prtils n floult or isprs. Disprs ly is moil in th nvironmnt n with run-off wtr n trnsfrr ross soil surf or with infiltrting wtr ownwrs within soil profil, whih n hv onsquns in griultur n th nvironmnt (Czyż n Dxtr, 28, 29, 211, 215). Th rilyisprsil ly (RDC) hs ynmi ntur n its ontnt in soil hngs with mny ftors, g wtting n rying of soil, n th soil orgni mttr ontnt. An xplntion n mor informtion r givn in Czyż n Dxtr (215). Prtiult orgni mttr (POM) trnsitionl, htrognous frtion of orgni mttr (OM) is n intrmit form in th y ontinuum twn frsh orgni rsius n humifi OM in soil (Cmrll n Elliot, 1992; Cmrll t l., 21; Gj t l., 21; Wnr, 24). Th tillg prti influns th POM ontnt in soil whih pns on soil typ n qulity of rsius input (Álvro-Funts t l., 28; Sinju t l., 26). POM plys n importnt rol in ggrgt formtion in soils n tmporrily provis sily vill nutrints for miroorgnisms n plnts. Mny rsrhrs hv us th POM frtion s n initor of OM sttus in soil n rognis POM s potntil initor of hngs in soil qulity in th short trm (Squir t l., 21; Yoo n Wnr, 28). Th siz n tivity of miroil popultions inhiting soil r irtly rlt to th quntity n qulity of orgni ron n othr nutrints vill in soil-riv orgni mnmnts n rop rsius. Soil nzyms r primrily of miroil origin (Bnik n Dik, 1999) n tlys ll iohmil rtions in soil, n r n intgrl prt of nutrints yling (Aost-Mrtinz t l., 28; Bnik n Dik, 1999). Som rsrhrs osrv signifint hngs in soil nzymti tivity rlt to vrious tillg n ropping mngmnt systms (Dik t l., 1996; Mrinri t l., 26). Hyrolysis of fluorsin itt (FDA) in soil is mit y suh non-spifi nzyms s lipss, protss n strss. Ovr th lst fw s FDA hyrolysis hs n wily us s suitl inx of th ovrll tivity of nzyms n miroorgnisms in soil (Bnik n Dik, 1999; Grn t l., 26). Also, th rt of FDA hyrolysis in soil hs n suggst s suitl prmtr for th monitoring of soil qulity n ioosystm stuis (Grn t l., 26). Th ojtiv of this stuy ws to trmin th ffts of long-trm us of iffrnt frming systms on hngs in physil (BD, RDC), hmil (OM, POM ontnt) n nzymti tivity in soil msur in trms of th intnsity of FDA hyrolysis. MATERIALS AND METHODS Th thr yr stuis (211-213) wr onut in long-trm fil xprimnt stlish in 1994 t th Osiny Exprimntl Sttion (51 28`N, 22 3`E) (Lulin voivoship) longing to th Institut of Soil Sin n Plnt Cultivtion, Stt Rsrh Institut (IUNG-PIB) in Pułwy, Poln. Th xprimntl fils, with r of out 1 h h, r situt prominntly on Hpli Luvisol soil. Som slt proprtis of th soil r prsnt in Tl 1. Mor informtion out th fil xprimnt n foun in Król t l. (213), Kuś n Jońzyk (28), n Mrtyniuk t l. (215). Crops in this xprimnt wr grown in iffrnt frming systms on non-rplit fils. Th orgni frming systm (ORG) onsist of 5 fils on whih th following rops wr rott: potto spring rly + intrrop grss/lovr mixtur (1st yr) grss/ lovr mixtur (2n yr) wintr wht. In this systm 3 t h -1 of grss/lovr ompost ws ppli unr potto rop n iologil prprtion ginst potto tl ws us. This systm suppli rltivly high mount of rop rsius whih ws inorport into th soil h yr. No minrl frtilisrs n plnt prottion hmils wr us. W ontrol ws s minly on mhnil trtmnts. Th intgrt frming systm (INT) onsist of 4 fils on whih th following rops wr rott: potto spring wht + intrrop f n wintr wht + ftrrop. Bln minrl frtiliztion with phosphorus n potssium ppli in this systm ws s on lultions of th mount of nutrints tkn-up y th rops n rmov with hrvst rops from th fils. Doss of nitrogn wr lult on th sis of rsults otin from qut soil n plnt tsts prform. W ontrol ws ppli minly with onsirtion of thrshols of hrmfulnss of grophgs. Orgni frtiliztion t th rt of 3 t h -1 (similrly s in th orgni frming systm) n intrrop plough own wr ppli into th soil unr pottos. Th most intnsiv wr two onvntionl frming systms with moulor ploughing invrting th top of soil up 2 m. Th onvntionl frming systm (CON) onsist of 3 fils on whih th following rops wr rott: wintr rp-wintr wht-spring rly. In th wintr wht monoultur-onvntionl frming systm (MON) wintr wht ws ultivt vry yr on th sm fil. In oth onvntionl frming systms th rops wr grown oring to th high input rommntions gnrlly us in Poln. Orgni frtiliztion ws limit to th wintr rp, n wintr wht strw ws spr on th fil surf ftr th fll hrvst n plough own into th soil. Th tillg trtmnt for h plot lwys rmin th sm. To ttr monstrt th iffrns twn th ffts of frming systms on th soil nvironmnt, th long-trm unultivt lomy sn soil unr prmnnt grss ws ollt, s n unultivt ontrol (CNT).

DIFFERENT FARMING SYSTEMS EFFECTS ON SOIL QUALITY 167 Rprsnttiv soil smpls (out 1 5 g h) wr tkn twi in vry growing sson whn wht ntr th mturity stg (in mi-jun) n just for hrvst from in-row plnting r t th pths of -5, 5-1, 15-2 n 3-35 m ross h tril. Soil smpls wr first wight, thn thoroughly mix n out 15 g susmpls wr ri t 15 o C for 24 h to trmin soil wtr ontnt. For miroiologil nlysis soil smpls wr siv through 2 mm msh siv. Th 3,6-itylfluorsin (FDA) hyrolysis tivity of th soil ws trmin y msuring th onntrtion of fluorsin rls ftr soil inution t 49 nm using th mtho sri y Dik t l. (1996). All nzym ssys wr triplit using ontrols without sustrt to orrt for kgroun. Enzym tivity ws rport s µg of prout form g -1 ry wight of soil h -1. Th ontnt of POM frtion ws msur oring to th moifi Cmrll t l. (21) mtho in whih POM ws stimt using loss-on-ignition (LOI) prour (Shult n Hopkins, 1996), s til y Gj t l. (21). POM xprss s % of OM ws vlut for th rl n su-rl lyrs of soil t th pth of -2 n 3-35 m, rsptivly. Anlyss of miroiologil tivity of soil n POM ontnt wr prform in th Dprtmnt of Agriulturl Miroiology t IUNG-PIB in Pułwy, Poln. Th prtil siz istriution of th soil (siving n simnttion) ws trmin using th Cssgrn romtri mtho moifi y Prószyński (PN-R-432, 1998). Th soil typ ws intifi oring to th Polish Soity of Soil Sin (PTG-28). RDC ontnt in soil ws msur in tn rplits for h frming systm sprtly using HACH turiimtr mol 21 (Czyż n Dxtr, 215). Soil OM ontnt ws msur y wt oxition using th Tiurin mtho. Soil ulk nsity (Mg m -3 ) ws lult using th wight n volum of soil (Czyż n Dxtr, 28). Bulk nsity n RDC ontnt wr trmin for soil tkn t th pths of -2, 3-35 n 5-2, 3-35 m, rsptivly. Th prtil siz istriution, ulk nsity (BD), rilyisprsil ly (RDC) n orgni mttr (OM) ontnt trmintions wr rri out in th Dprtmnt of Soil Sins Erosion n Ln Consrvtion t IUNG-PIB in Pułwy, Poln. Th soil ph ws msur y th potntiomtri mtho using glss ltro in soil suspnsion in 1 M potssium hlori solution (1:2 soli:liqui mixtur). Avill phosphorus n potssium ontnt in soil wr trmin y th Egnr-Rihm mtho in th ntrl rtifi lortory longing to th IUNG-PIB in Pułwy, Poln. Sttistil nlyss wr rri out using th ANOVA mtho n th 95% onfin limit (p<.5) ws hosn to init th signifin of iffrns twn stui prmtrs of soil physil, hmil n iologil proprtis. RESULTS AND DISCUSSION Th ffts of iffrnt frming systms on soil hv n intnsivly stui. Grt ttntion ws pi to th ffts of suh prtis on hngs in quntity of orgni mttr (OM) in soil n its omposition. Th ontnt of OM in rl soil unr iffrnt frming systms n unultivt ontrol soil is prsnt in Fig 1. Th highst onntrtion of OM (1.98%) ws msur in th ontrol soil (CNT) in th lyr t th pth of -5 m. Also, quit high ontnt of OM (1.66%) ws trmin in th lowr lyr of CNT soil t th pth of 5-1 m. For th lyr of -1 m pth of CNT soil th ontnt of OM mount to 1.82%. Th soil unr ORG frming systm, whr plough ws not us, show signifintly highr ontnt of OM (1.68%) in -1 m soil lyr s ompr to th soil unr th othr frming systms, most of ll th CON n MON, oth s on intnsiv plough oprtions. Th trmin quntity of OM in soil unr CON n MON frming systms rh th onntrtion of 1.18 n 1.25%, rsptivly. In th soil unr th intgrt (INT) frming systm th quntity of OM rh 1.21% (Tl 1). Th most istintiv iffrn twn tillg with soil invrsion n no-tillg is in th top soil th first fw ntimtrs soil lyr (Frnzlurs, 22). Th frming systms s on plough oprtions tn to homognis th soil within th pth fft y implmnts, in ontrst to no-tillg, whr th rsiu umults minly t th soil surf n os not involv soil isturn n movmnt (Slvo t l., 21). Our rsults r in grmnt with prvious finings mntion ov. Aftr thr yrs of th stuy th fft of frming systms on soil ulk nsity (BD) ws noti. Th BD of soil (-2 m lyr) unr th CON, INT n MON frming systms show highr vlus (1.63 Mg m -3, on vrg) s ompr to BD msur in soil unr th ORG frming systm (1.58 Mg m -3, on vrg), ut th signifin of ths rsults ws not mningful t p<.5. Th iffrns in DB i not show ny sttistil signifin twn th CON, INT n MON frming systms ithr (-2 m OM ontnt (%) 3 2 1 f f f f -5 5-1 15-2 3-35 vrg--2 Soil pth (m) Fig. 1. Orgni mttr ontnt in soil unr iffrnt frming systms. Vlus mrk with iffrnt lttrs r sttistilly signifint t p.5.

168 A.M. GAJDA t l. T l 1. Som physil n hmil proprtis of xmin soil (-1 m) Frming systm Soil txtur, mm (%) OM ph P 2 O 5 K 2 O Mg Soil typ 2-.5.5-.2 <.2 (%) KCl (mg 1 g -1 soil) ORG 77 21 2 1.68 5.7 17.8 9.2 6. CON 75 22 3 1.17 6.1 14.7 21.4 19.9 lomy INT 82 15 3 1.2 5.2 8. 16.1 13.6 sn MON 78 21 1 1.28 5.9 19.3 14.2 17.2 CNT 77 21 2 1.65 4.4 16.3 16. 6.3 ORG orgni frming systm, CON onvntionl frming systm, INT intgrt frming systm, MON wintr wht monoultur-onvntionl, CNT- ontrol soil (prmnnt grss). pth). Th only signifint iffrns in BD msurmnt wr otin for soil unr th CON, INT, MON frming systms n CNT soil whih rh.13 Mg m -3 (8.%), on vrg (Fig. 2). In th lowr lyr of soil, 3-35 m, BD ws out 31% highr, on vrg, s ompr to soil BD in th lyr of -2 m. Th signifin of otin iffrns in BD twn soil lyrs stui ws onfirm sttistilly. In omprison to othr stui frming systms, highr vlu of BD ws otin in th 3-35 m lyr of soil unr th ORG frming systm 1.83 Mg m -3, ut th frn ws not signifint. Thr wr no signifint iffrns twn th CON, INT n MON frming systms in soil BD in th lyr of 3-35 m, lso. Trns osrv in th msurmnts of BD llow to onlu tht frming systms s on lss invrtil mngmnt nhn th rs of BD, spilly t -2 m pth, ontrry to th CON frming systm. Chngs in BD of rl soil wr muh mor lrly sn s ompr to th unultivt CNT soil (Fig. 2). Similr rsults hv n pulish y Rhmn t l. (28). Furthrmor, Do (1996) rport tht non-till soil h lowr BD thn onvntionlly-till soil. Though, Ishq t l. (22) rport tht no signifint fft of tillg mthos on soil BD ws noti. Rsmussn (1999) rmrk tht ths ontritory rsults my u to iffrns in rop spis, soil proprtis, limti hrtristis n omplx intrtions of ll ths ftors. Aitionlly, n mount of rop rsius inorport into soil my nhn hngs in BD msurmnts, wht proly influn lso th hngs in msurmnts of soil BD in our frming systms (Fig. 2). Th hngs in th ontnt of rily-isprsil ly (RDC), trmining soil stility in wtr, r prsnt in Fig. 3. Th soil unr th CON n MON frming systms ontin th highst mounts of RDC. In oth, 5-2 n 3-35 m lyrs of soil unr intnsiv tillg systms th mount of RDC rh 1.6 n 2.3 g 1 g -1 of soil, rsptivly. Th most nfiil ffts on rs of RDC ontnt wr osrv in soil unr th ORG frming systm. At th pth of 5-2 m, th msur ontnt of RDC Bulk nsity (Mg m -3 ) Fig. 2. Th fft of th iffrnt frming systms on soil ulk nsity. Explntions s in Fig. 1. RDC (g 1 g -1 soil) 3 2 1 3 2 1-2 3-35 Soil pth (m) 5-2 3-35 Soil pth (m) ORG CON INT MON Fig. 3. Th fft of th iffrnt frming systms on rilyisprsil ly (RDC) ontnt in soil. Explntions s in Fig. 1. ws 3 tims lowr s ompr to th CON n MON frming systms. At th lowr lyr of soil (3-35 m) unr th CON n MON frming systms th ontnt of RDC ws 24% highr s ompr to rl soil t lyr of 5-2 m. In soil unr th INT frming systm th ontnt of RDC mount to 1.2 g 1 g -1 of soil, on vrg, in oth th rl (5-2 m) n susoil (3-35 m) lyrs (Fig. 3). As it ws writtn y Etn t l. (29), prvious stuis (Rvs, 1997; Trüg n Düring, 1999) show tht th umultion of soil orgni mttr in th uppr plough lyr inrss mor in trtmnts with shllow tillg thn in thos with moulor ploughing. Our rsults init tht th CON n MON frming systms s

DIFFERENT FARMING SYSTEMS EFFECTS ON SOIL QUALITY 169 on plough oprtion fft th soil unfvourly, nhning th rs of soil stility in wtr n inrsing th susptiility of th soil to rosion prosss. Highr onntrtion of orgni mttr in soil influn th rs in RDC ontnt. Aoring to Czyż t l. (22) n Dxtr t l. (28) th totl orgni C ontrols minly th RDC, n thn RDC shows similr outom to orgni mttr, ut sin it is th omplx-oun C similr outom oul not xpt for RDC. As Czyż n Dxtr (215) rport, n inrs of orgni mttr ontnt in soil ws foun to ru th mount of RDC in Polish soil (Dxtr n Czyż, 2), in Romnin soils (Wtts t l., 1996), n for UK soil (Wtts n Dxtr, 1997). Diffrnt tillg or othr inputs of mhnil nrgy to soil inrs th mount of RDC (Czyż n Dxtr, 29, 215; Wtts t l., 1996,). Th mngmnt prtis fft not only th quntity of totl soil OM, ut its qulity s wll. Th ffts of iffrnt frming systms on th ontnt of iologilly tiv soil orgni mttr frtion POM r prsnt in Fig. 4. Th highst ontnt of POM ws msur in th unultivt ontrol soil, t 6.2 mg g -1 ir ry soil, on vrg, in th lyr of -5 m. Among th frming systms, soil unr th ORG frming show th highst ontnt of POM frtion 3.5 mg g -1.. soil. Unr th CON frming systm s on ploughing, th quntity of POM frtion ws ror t th signifintly lowr lvl of 2.7 mg g -1.. soil, s ompr to CNT soil n soil unr th ORG frming systm. A iffrn in POM quntity, signifint t p<.5, of out 55.6%, on vrg, ws otin twn CNT soil n th soil unr th frming systms stui (ORG, CON, INT, MON), t th pth of 5-1 m. At th soil lyr of 15-2 m, out 25% grtr ontnt of POM ws stimt in soil unr CON n MON frming systms in rltion to th lss isturing ORG n INT frming systms. Morovr, in th sm soil lyr out 43% lowr quntity of POM ws ror in CNT soil in rltion to th vrg POM ontnt in th soil unr th frming systms stui. Thr wr no signifint iffrns in th quntitis of POM s influn y th frming systms t th 3-35 m susoil lyr. Also, soil t th lyr of -2 m i not show ny signifint iffrns twn th frming systms in th vrg ontnts of POM (Fig. 4). Th ffts of ORG, INT n MON frming systms n no-till on POM quntity in rltion to CON frming systm r prsnt in Fig. 5. Th highst inrs of POM (out 23%) ws not in -5 m soil unr th ORG frming systm. Th rs of iologilly-tiv frtion of OM rh th highst vlus in th soil lyr t 15-2 m pth unr th INT n ORG systms, 29 n 25% on vrg, rsptivly. In th soil lyr of 3-35 m unr th ORG, INT n MON frming systms th rs of POM rh 14.3%, on vrg, in rltion to th orrsponing soil lyr unr th CON systm. POM ontnt (mg g -1.. soil) Fig. 4. POM ontnt in soil unr iffrnt frming systms. Explntions s in Fig. 1. POM (%) 8 6 4 2 6 4 2-2 -4-6 Soil pth (m) f f f f f -5 5-1 15-2 3-35 -5 5-1 15-2 3-35 vrg--2 Soil pth Fig. 5. Inrs n/or rs of POM quntity in stui lyrs of soil unr ORG, INT, MON frming systms n unultivt CNT soil vrsus CON frming systm ftr thr-yr stuis. POM s % OM 5 4 3 2 1-2 3-35 Soil pth (m) Fig. 6. POM frtion xprss s % of OM in rl n su-rl lyr of soil unr th iffrnt frming systms. Explntions s in Fig. 1. For ttr pitur of otin iffrns in th ffts of frming systms on th soil nvironmnt th unultivt soil (CNT) ws nlys s spifi ontrol. Th iffrns in hngs of POM quntity in th ontrol soil (in -5 m soil 44% inrs; in 5-2 m soil 41% rs, on vrg) in rltion to th soil unr CON frming systm wr th highst mong ll stui soil pths (Fig. 5). In oth lyrs of th soil, -2 n 3-35 m, th POM frtion rprsnt rltivly smll prntg of totl OM, t 2-24 n 13-18%, on vrg, rsptivly (Fig. 6). Ths rsults r in grmnt with vlus in th rng of 1-3% s rport in litrtur (Mrtin-Lmmring t l., 213; Wnr, 24). In th ontrol soil (CNT) th ontriution of POM in totl OM in th -2 m pth rh

17 A.M. GAJDA t l. out 4%, ut in th su-rl soil lyr (3-35 m) it rmin on similr lvl (13%, on vrg) to th orrsponing lyr of soil unr ORG frming (Fig. 6). Similr rsults wr otin in rlir stuis of Gj (21). Th rsults onfirm tht th prntg of th totlly n/or prtly humifi frtion of OM (POM) in th totl ontnt of OM rs signifintly with soil pth, spilly in soil unr no-till systm n non-invrsion tillg. Som othr rsrhrs lso osrv similr vritions in msurmnts of POM n OM quntitis in pstorl n zro-till soils (Gupt t l., 1994; Hyns, 1999). In intsivly-plough soil unr CON n MON frming systms hngs in th prntg of POM in totl OM wr not signifint in oth -2 n 3-35 m soil lyrs. Bsis, smll inrs of totlly n/or prtly humifi frtion n soil OM ws not vn in th surl lyr (Figs 1, 6). Aoring to Wnr (24), lrg proportion of th POM frtion longs to th lil soil OM pool n is physilly prott within soil ggrgts, n my minrlis mor quikly, spilly if soil is istur (g with moulor ploughing) n ths ggrgts rokn. With ruing tillg intnsity, th pross of soil ggrgtion my inrs n offr som prottion to th POM frtion s wll (Mrtin-Lmmring t l., 211). In soil whih hs not n till th input of frsh n sily omposl plnt mtril, suh s grss top n roots, rss s funtion of pth, whih ws lso rflt in our stuis in th istriution of OM n its omponnt POM in th soil profil (Figs 1, 4, 6). Th frming prtis signifintly fft th tivity of miroorgnisms in th soil hitt s msur with FDA hyrolysis. Th FDA hyrolysis tivity whih is involv in th trnsformtion of soil OM rh th highst vlus in th ontrol soil n in th soil unr th ORG frming, minly u to high position of plnt rsius. In omprison to tillg with soil invrsion (CON n MON frming systms), 2 n 2.5 tims highr tivity of miroorgnisms in FDA hyrolysis in soil unr th ORG frming systm n in th ontrol (CNT) soil wr ror t th pth of -5 m. In rltion to th soil unr INT frming systm, th tivity of miroorgnisms in FDA hyrolysis pross in soil unr th CON n MON systms ws lowr only 1.3 tims. Similr pttrns in th rt of FDA hyrolysis wr osrv in th soil lyr t 5-1 m pth. Th otin vlus of FDA hyrolysis msurmnt in 5-1 m soil lyr unr ORG frming systm n CNT wr 1.8 tims smllr, on vrg, s ompr to th top soil horizon (-5 m). Thr wr no signifint iffrns in th tivity of FDA hyrolysis twn pths -5 n 5-1 m in soil unr th CON n INT frming systms. Th rt of FDA hyrolysis ropp grully with n inrs of soil pth. At th 15-2 m lyr th tivity of miroorgnisms in FDA hyrolysis in soil unr ORG systm n CNT ws 2.7 tims lowr, on v- rg, s ompr to th -5 m lyr. Also, in th 15-2 m lyr of soil unr th CON, INT n MON frming systms FDA ws hyrolyz 1.1-1.3 tims slowr thn in th soil lyr of -5 m. Th susoil lyr (3-35 m) show th lowst miroil tivity in FDA hyrolysis unr ll stui frming systms (Fig. 7). Also, Stott n Dik (24) rport tht mn vlus of fluorsin rls in no-till wr 14 n 3% grtr thn in hisl n moulor plough systms, rsptivly. Grgorih t l. (1994) n Lopz t l. (21) suggst tht nzym tivitis r gnrlly th most snsitiv initors of frming systms, whr rop rsiu mngmnt ffts th lowgroun miroil ommunity. Th rsults otin in our stuis show tht FDA hyrolysis ws snsitiv initor of th ffts of frming systms on th soil nvironmnt. A signifint influn of OM on rng of physil (Czyż t l., 22; Czyż n Dxtr, 29; Dxtr n Czyż 2; Dxtr t l., 28; Wtts t l., 1996,,) n iologil (Askri n Holn, 215; Dorn n Prkin, 1994, 1996; Mrinri t l., 26) proprtis of soil hs n rport. Th onntrtion of OM influn strongly th ulk nsity (BD), rily-isprsil ly ontnt (RDC) n iologil tivity xprss s th FDA hyrolysis mostly in th surf soil horizon, s onfirm y th high linr orrltions otin twn soil proprtis n soil OM ontnt (Tl 2). FDA hyrolysis (µg fluorsin g -1.w. soil h -1 ) 16 12 8 4 f f f f h g g h h i f -5 5-1 15-2 3-35 vrg--2 Soil pth (m) Fig. 7. Efft of th iffrnt frming systms on FDA hyrolysis tivity in soil. Explntions s in Fig. 1. T l 2. Rltionship twn orgni mttr (OM) n som physil, hmil n iologil proprtis of soil unr iffrnt frming systms Rlt soil prmtrs Corrltion offiint (r) Linr qution OM BD -.78* y = -.173x + 1.854 OM RCD -.67* y = -.544x + 1.574 OM FDA.886** y = 4.66x.991 OM POM.86* y =.677x + 1.69 OM orgni mttr ontnt, BD ulk nsity, RDC rilyisprsil ly, FDA FDA hyrolysis tivity, POM prtiult orgni mttr, sttistil signifin: *p.5, **p.1.

DIFFERENT FARMING SYSTEMS EFFECTS ON SOIL QUALITY 171 Thr r oftn invrs rltionships twn BD, RDC n OM ontnts in soil, s it ws rport y Czyż n Dxtr (215) n Stuttr t l. (29). CONCLUSIONS 1. Th stui prmtrs of physil, hmil n iologil proprtis of soil wr influn signifintly y orgni mttr ontnt. 2. Among th frming systms stui, th orgni frming nhn n inrs of orgni mttr onntrtion in soil th most, whih ws rflt in n inrs of prntg of prtiult orgni mttr frtion in totl orgni mttr n highr tivity of miroorgnisms s msur y fluorsin itt hyrolysis. 3. Highr onntrtion of orgni mttr in soil unr orgni frming systm s ompr to soil unr othr frming systms rs positivly soil ulk nsity, rily-isprsil ly ontnt n inrs th vlus of th miroiologil prmtrs stui. 4. Th stuis show tht th prmtrs: ulk nsity, rily-isprsil ly ontnt, prtiult orgni mttr frtion n fluorsin itt hyrolysis shoul onsir s ing importnt for mintining th ility of soils to funtion. REFERENCES Aost-Mrtinz V., Aost-Mro D., Sotomyor-Rmirz D., n Cruz-Roriguz L., 28. Miroil ommunitis n nzymti tivitis unr iffrnt mngmnt in smiri soils. Appli Soil Eol., 38, 249-26. Askri M.S. n Holn N.M., 215. Quntittiv soil qulity inxing of tmprt rl mngmnt systms. Soil Till. Rs., 15, 57-67. Álvro-Funts J., Lópz M.V., Cntro-Mrtínz C., n Arrú J.L., 28. Tillg ffts on soil orgni ron frtions in Mitrrnn ryln groosystms. Soil Si. So. Am. J., 72, 541-547. Blok J.A. n Skjmst J.O., 2. Rol of th soil mtrix n minrls in protting nturl orgni mtrils ginst iologil ttk. Orgni Gohmistry, 31, 697-71. Bnik A.K. n Dik R.P., 1999. Fil mngmnt ffts on soil nzym tivitis. Soil Biol. Biohm., 31, 1471-1479. Cmrll C.A., Gj A.M., Dorn J.W., Winhol B.J., n Kttlr T.A., 21. Estimtion of prtiult n totl orgni mttr y wight loss-on-ignition. In: Assssmnt Mthos for Soil Cron (Es R. Ll, J.M. Kiml, R.F. Folltt, B.A. Stwrt). CRC Prss LLC, Bo Rton, FL, USA. Cmrll C.A. n Elliott E.T., 1992. Prtiult soil orgni mttr. Chngs ross grssln ultivtion squn. Soil Si. So. Am. J., 56, 777-783. Czyż E.A. n Dxtr A.R., 28. Soil physil proprtis unr wintr wht grown with iffrnt tillg systms t slt lotions. Int. Agrophysis, 22, 191-2. Czyż E.A. n Dxtr A.R., 29. Soil physil proprtis s fft y tritionl, ru n no-tillg for wintr wht. Int. Agrophys., 23, 319-326. Czyż E.A. n Dxtr A.R., 211. Turiity. In: Enylopi of Agrophysis (Es J. Gliński, J. Horik, J. Lipi). Springr Prss, Dorrht-Hilrg-Lonon- Nw York. Czyż E.A. n Dxtr A.R., 215. Mhnil isprsion of ly from soil into wtr: rily-isprs n spontnouslyisprs ly Int. Agrophys., 29, 31-37. Czyż E.A. n Dxtr A.R., n Trlk H., 22. Contnt of rily isprsil ly in th rl lyr of som Polish soils. In: Sustinl Ln Mngmnt Environmntl Prottion A Soil Physil Approh (Es M. Pglii, R. Jons). Avns in Goology, Ctn Vrlg, Grmny. Do T.H., 1996. Tillg systm n rop rsiu ffts on surf omption of Plustill. Agron. J., 88, 141-148. Dxtr A.R. n Czyż E.A., 2. Effts of soil mngmnt on th isprsiility of ly in sny soil. Int. Agrophysis, 14, 269-272. Dxtr A.R., Rihr G., Arrouys D., Czyż E.A., Jolivt C., n Duvl O., 28. Complx orgni mttr ontrols soil physil proprtis. Gorm, 144, 62-627. Dik R.P., Brkwll D.P., n Turo R.F., 1996. Soil nzym tivitis n ioivrsity msurmnts n intgrtiv miroil initors. In: Mthos of ssssing soil qulity. Soil Sin Soity of Amri Pulition, Mison, WI, USA. Dorn J.W. n Prkin T.B., 1994. Dfining n ssssing soil qulity. In: Soil Sin Soity of Amri, Amrin Soity of Agronomy (Es J.W. Dorn, D.C. Colmn, D.E. Bzik, B.A. Stwrt). Dfining Soil Qulity for Sustinl Environmnt. Spil Pulition, Mison, WI, USA. Dorn J.W. n Prkin T.B., 1996. Quntittiv initors of soil qulity: A minimum t st. In: Mthos for Assssing Soil Qulity (Es J.W. Dorn, A.J. Jons). SSSA Spil Pulition 49, Mison, WI, USA. Etn A., Ryrg T., n Arvisson J., 29. Rily isprsil ly n prtil trnsport in fiv Swish soils unr long-trm shllow tillg n moulor ploughing. Soil Till. Rs., 16, 79-84. Frnzlurs A.J., 22. Soil orgni mttr strtifition rtio s n initor of soil qulity. Soil Tillg Rs., 66, 95-16. Gj A.M., 21. Miroil tivity n prtiult orgni mttr ontnt in soils with iffrnt tillg systm us. Int. Agrophys., 24, 129-138. Gj A.M., Dorn J.W., Kttlr T.A., Winhol B.J., Pikul J.L.Jr., n Cmrll C.A., 21. Soil qulity vlutions of ltrntiv onvntionl mngmnt systms in th grt plins. In: Assssmnt Mthos for Soil Cron (Es R. Ll, J.M. Kiml, R.F. Folltt, B.A. Stwrt). CRC Prss LLC, Bo Rton, FL, USA. Grn V.S. n Stott D.E., n Dik M., 26. Assy for fluorsin itt hyrolyti tivity: optimiztion for soil smpls. Soil Biol. Biohm., 38, 693-71. Grgorih E.G., Crtr M.R., Angrs D.A., Monrl C.M., n Ellrt B.H., 1994. Towrs minimum t st to ssss soil orgni mttr qulity in griulturl soils. Cn. J. Soil Si., 74, 367-385. Gupt V.V.S.R., Ropr M.M., Kirkgr J.A., n Angus J.F., 1994. Chngs in miroil iomss n orgni mttr lvls uring th first yr of moifi tillg n stul mngmnt prtis on r rth. Austrlin J. Soil Rs., 32, 1339-1354.

172 A.M. GAJDA t l. Hyns R.J.,1999. Lil orgni mttr frtions n ggrgt stility unr short-trm grss-s lys. Soil Biology Biohmistry, 31, 1821-183. Ishq M., Irhim M., n Ll R., 22. Tillg ffts on soil proprtis t iffrnt lvls of frtilizr pplition in Punj, Pkistn. Soil Till. Rs., 68, 93-99. Krln D.L., Kovr J.L., Cmrll C.A., n Colvin T.S., 213. Thirty-yr tillg ffts on rop yil n soil frtility initors. Soil Till. Rs., 13, 24-41. Król A., Lipi J., Turski M., n Kuś J., 213. Effts of orgni n onvntionl mngmnt on physil proprtis of soil ggrgts. Int. Agrophys., 27, 15-21. Kuś J. n Jońzyk K., 28. Influn of orgni n onvntionl rop proution systm on som prmtrs of soil frtility. J. Rs. Appl. Agri. Eng., 53, 161-165. Lópz C.V.G, Grí M. l C.C., Frnánz F.G.A., Bustos C.S., Chisti Y., n Svill J.M.F., 21. Protin msurmnts of mirolgl n ynotril iomss. Biorsour. Thnol., 11, 7587-7591. Mrinri S., Mninlli R., Cmpigli E., n Grgo S., 26. Chmil n iologil initors of soil qulity in orgni n onvntionl frming systms in Itly. Eologil Initors, 6, 71-711. Mrtín-Lmmring D., Hontori C., Tnorio J.L., n Wltr I., 211. Mitrrnn ryln frming: fft of tillg prtis on slt soil proprtis. J. Agron., 13, 382-389. Mrtín-Lmmring D., Tnorio L., Alrrán M.M., Zmrn E., n Wltr I., 213. Influn of tillg prtis on soil iologilly tiv orgni mttr ontnt ovr growing sson unr smiri Mitrrnn limt. Spnish J. Agri. Rs., 11(1), 232-243. Mrtyniuk S., Kozil M., Stlng J., n Jońzyk K., 215. Lil frtions of soil orgni mttr n miroil hrtristis of soil unr orgni n onvntionl rop mngmnt systms. Biol. Agri. Hortiultur, 31(1), 1-6. Rhmn M.H., Okuo A., Sugiym S., n Myln H.F., 28. Physil, hmil n miroiologil proprtis of n Anisol s rlt to ln us n tillg prti. Soil Till. Rs., 11, 1-19. Rsmussn K.J., 1999. Impt of ploughlss soil tillg on yil n soil qulity: Sninvin rviw. Soil Till. Rs., 53, 3-14. Rvs D.W., 1997. Th rol of soil orgni mttr in mintining soil qulity in ontinuous ropping systm. Soil Till. Rs., 43, 131-167. Rosll R.A., Gsproni S.C., n Gltini S.A., 21. Soil orgni mttr vlution. In: Mngmnt of Cron Squstrtion in Soils. Avns in Soil Sin (Es R., Ll, J.M. Kiml, R.F. Folltt, B.A. Stwrt). CRC Prss, Bo Rton, FL, USA. Sinju U.M., Lnssn A., Csr-TonTht T., n Wll J., 26. Tillg n rop rottion ffts on ryln soil n rsiu ron n nitrogn. Soil. Si. So. Am. J., 7, 668-678. Slvo L., Hrnnz J., n Ernst O., 21. Distriution of soil orgni ron in iffrnt siz frtions, unr pstur n rop rottions with onvntionl tillg n no-till systms. Soil Till. Rs., 19, 116-122. Shult E.E. n Hopkins B.G., 1996. Estimtion of soil orgni mttr y wight loss-on-ignition. In: Soil Orgni Mttr: Anlysis n Intrprttion. SSSA Spil Pulition No. 46., Soil Sin Soity of Amri, Mison, WI, USA. Squir C.H., Ally M.M., n Jons B.P., 21. Evlution of potntilly lil soil orgni ron n nitrogn frtiontion prours. Soil Biol. Biohm., 43, 438-444. Stott D.E. n Dik M., 24. Chngs in surf soil physil, hmil n iohmil proprtis unr long-trm mngmnt prtis on tmprt mollisol. ISCO, 13th Int. Soil Consrvtion Orgnistion Conf. Brisn, July 4-9. Consrving Soil n Wtr for Soity: Shring Solutions Ppr No. 656, 1-4. Stuttr M.I., Lumson D.G., Billtt M.F., Low D., n Dks L.K., 29. Sptil vriility in proprtis ffting orgni horizon ron storg in upln soils. Soil Si. So. Am. J., 73, 1724-1732. Trüg F. n Düring R.A., 1999. Ruing tillg intnsity rviw of rsults from long-trm stuy in Grmny. Soil Till. Rs., 53, 15-28. Wnr M., 24. Soil orgni mttr frtions n thir rlvn to soil funtion. In: Soil Orgni Mttr in Sustinl Agriultur (Es F. Mgoff, R.R. Wil). CRC Prss, Bo Rton, FL, USA. Wtts C.W. n Dxtr A.R., 1997. Th influn of orgni mttr in ruing th stiliztion of soil y simult tillg. Soil Till. Rs., 42, 253-275. Wtts C.W., Dxtr A.R., Dumitru E., n Arvisson J., 1996. An ssssmnt of th vulnrility of soil strutur to stiliztion uring tillg. Prt I A lortory tst. Soil Till. Rs., 37, 161-174. Wtts C.W., Dxtr A.R., Dumitru E., n Cnrh A., 1996. Struturl stility of two Romnin soils s influn y mngmnt prtis. Ln Dgrtion Dvlopmnt, 7, 217-238. Wtts C.W., Dxtr A.R., n Longstff D.J., 1996. An ssssmnt of th vulnrility of soil strutur to stiliztion uring tillg. Prt II Fil trils. Soil Till. Rs., 37, 175-19. Yoo G. n Wnr M.M., 28. Tillg ffts on ggrgt turnovr n squstrtion of prtiult n humifi soil orgni ron. Soil Si. So. Am. J., 72, 67-676.