A note on Steiner symmetrization of hyperbolic triangles

Similar documents
Horoball Packings for the Lambert-cube Tilings in the Hyperbolic 3-space

THE ISODIAMETRIC PROBLEM AND OTHER INEQUALITIES IN THE CONSTANT CURVATURE 2-SPACES

Best Lower and Upper Approximates to Irrational Numbers

On the Volume of Unbounded Polyhedra in the Hyperbolic Space

Covariograms of convex bodies in the plane: A remark on Nagel s theorem

The Apollonius Circle as a Tucker Circle

The longest shortest piercing.

Hyperbolic Analytic Geometry

Exercises for Unit I I (Vector algebra and Euclidean geometry)

Part IB GEOMETRY (Lent 2016): Example Sheet 1

The Densest Packing of 13 Congruent Circles in a Circle

Hyperbolic Transformations

Fuchsian groups. 2.1 Definitions and discreteness

Hilbert s Metric and Gromov Hyperbolicity

The equation of Euler s line yields a Tzitzeica surface

Fall, 2003 CIS 610. Advanced geometric methods. Homework 3. November 11, 2003; Due November 25, beginning of class

ISOPERIMETRIC REGIONS IN ROTATIONALLY SYMMETRIC CONVEX BODIES

Stable periodic billiard paths in obtuse isosceles triangles

Brouwer Fixed Point Theorem: A Proof for Economics Students

EMBEDDING OF THE TEICHMÜLLER SPACE INTO THE GOLDMAN SPACE. Hong Chan Kim. 1. Introduction

arxiv: v2 [math.mg] 15 Nov 2017

SHORTEST PERIODIC BILLIARD TRAJECTORIES IN CONVEX BODIES

A Simplex Contained in a Sphere

Homework Assignments Math /02 Fall 2014

A unique representation of polyhedral types. Centering via Möbius transformations

Y. D. Chai and Young Soo Lee

On the Length of Lemniscates

arxiv: v2 [math.co] 3 Jan 2019

The notable configuration of inscribed equilateral triangles in a triangle

On the Miquel point of simplices

TILING ABELIAN GROUPS WITH A SINGLE TILE

An Arrangement of Pseudocircles Not Realizable With Circles

SYMPLECTIC GEOMETRY: LECTURE 5

VECTORS AND THE GEOMETRY OF SPACE

JOHN C. BAEZ AND KARINE BAGDASARYAN AND PHILIP GIBBS

(1.1) Mi= f (Z -1-)dP, i = 0, 1,,* - 1,

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

VECTORS IN A STRAIGHT LINE

Geometry in the Complex Plane

The Stong Isoperimetric Inequality of Bonnesen

Lars Valerian Ahlfors: Collected Papers Volume Rae Michael Shortt Assistant Editor

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31

13 th Annual Harvard-MIT Mathematics Tournament Saturday 20 February 2010

KIRSZBRAUN-TYPE THEOREMS FOR GRAPHS

Stammler s circles, Stammler s triangle and Morley s triangle of a given triangle

6 6 DISCRETE GROUPS. 6.1 Discontinuous Group Actions

E. Falbel and P.-V. Koseleff

arxiv: v1 [math.mg] 27 Jan 2016

Examples of Minimal Surfaces

2 hours THE UNIVERSITY OF MANCHESTER.?? January 2017??:????:??

Periodic constant mean curvature surfaces in H 2 R

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

Deviation Measures and Normals of Convex Bodies

A TWO-DIMENSIONAL PÓLYA-TYPE MAP FILLING A PYRAMID. Pan Liu

A Polyhedral Cone Counterexample

The Banach-Tarski paradox

THE HYPERBOLIC METRIC OF A RECTANGLE

Homework Assignments Math /02 Fall 2017

GEOMETRY Notes Easter 2002

ON THE INNER CURVATURE OF THE SECOND FUNDAMENTAL FORM OF A SURFACE IN THE HYPERBOLIC SPACE

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Classical Mechanics. Luis Anchordoqui

Finite Presentations of Hyperbolic Groups

Mathematics 3210 Spring Semester, 2005 Homework notes, part 8 April 15, 2005

the neumann-cheeger constant of the jungle gym

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space

GLOBAL, GEOMETRICAL COORDINATES ON FALBEL S CROSS-RATIO VARIETY

Alhazen s Hyperbolic Billiard Problem

On the discrepancy of circular sequences of reals

Kähler configurations of points

GENERATING NON-NOETHERIAN MODULES CONSTRUCTIVELY

A crash course the geometry of hyperbolic surfaces

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018

Course Nov 03, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Hinweis.

III.3. Analytic Functions as Mapping, Möbius Transformations

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS

On the measure of axial symmetry with respect to folding for parallelograms

Asymptotic Behaviour of λ-convex Sets in the Hyperbolic Plane

Malfatti s problems 165. Malfatti s problems. Emil Kostadinov Mathematics High School Acad. S. Korolov, 11 grade Blagoevgrad, Bulgaria.

Isometries of Hyperbolic Space

Solutions to the Exercises * on Multiple Integrals

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

ON FREE PLANES IN LATTICE BALL PACKINGS ABSTRACT. 1. Introduction

Poincaré Models of Hyperbolic Geometry

Equidistant curve coordinate system. Morio Kikuchi

Readings for Unit I from Ryan (Topics from linear algebra)

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO

MATH 12 CLASS 2 NOTES, SEP Contents. 2. Dot product: determining the angle between two vectors 2

Reflections of planar convex bodies

Hyperbolic Geometry Solutions

1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations

Affine surface area and convex bodies of elliptic type

POINCARE AND NON-EUCLIDEAN GEOMETRY

Chapter 14 Hyperbolic geometry Math 4520, Fall 2017

On The Volume Of The Trajectory Surface Under The Galilean Motions In The Galilean Space

Geometry beyond Euclid

Brunn Minkowski Theory in Minkowski space-times. François Fillastre Université de Cergy Pontoise France

On closed Weingarten surfaces

The General Solutions of Frenet s System in the Equiform Geometry of the Galilean, Pseudo-Galilean, Simple Isotropic and Double Isotropic Space 1

Transcription:

Elem. Math. 58 (2003) 21 25 0013-6018/03/010021-5 c Birkhäuser Verlag, Basel, 2003 Elemente der Mathematik A note on Steiner symmetrization of hyperbolic triangles François Guéritaud François Guéritaud studiert Mathematik an der École Normale Supérieure in Paris. Bis Ende 2002 arbeitete er als Forschungsstudent an der University of Southern California in Los Angeles. Neben seinem Interesse an der Visualisierung von regelmässigen 4-dimensionalen Polytopen umfasst sein Arbeitsgebiet gegenwärtig die Topologie und die hyperbolische Geometrie. We give a short proof of a statement first shown in [1, Thm 4] and also used in [2] for isoperimetric considerations about hyperbolic simplices. The original proof given in [1] involved some computer algebra. The statement is as follows: Let us consider a geodesic line D in the hyperbolic plane, together with two hypercycles Λ and H (curves at constant distance from D) lying in the same half plane, at distances λ and h from D respectively, with 0 <λ<h. ThenletA, B D be fixed points and consider all triangles ABC with C H. We claim that: Theorem 1 The intersection of ABC with Λ is of maximal length when ABC is isosceles with respect to C, and only then. Bezeichnet man Halbkreise der oberen Halbebene der komplexen Zahlenebene, die senkrecht auf der reellen Achse stehen, als Geraden dieser Halbebene, so erhält man ein Modell der hyperbolischen Geometrie (konstanter negativer Krümmung), das sogenannte Poincaré Modell. Die Längenmessung in dieser Geometrie unterscheidet sich deutlich von der uns vertrauten Längenbestimmung in der Euklidischen Geometrie. Dementsprechend komplex gestalten sich in der Regel Längen- und Flächenbestimmungen in der hyperbolischen Geometrie. Trotz dieses Umstands gelingt dem Autor in dieser Arbeit ein elementarer Beweis einer Maximalitätseigenschaft gleichschenkliger hyperbolischer Dreiecke, aus der sich leicht verschiedene isoperimetrische Ungleichungen ableiten lassen. In einem früheren Beweis desselben Satzes mussten L. Karp und N. Peyerimhoff noch auf eine Faktorisierung eines Polynoms vom Grade 38 mit Hilfe eines Computeralgebrasystems zurückgreifen..

22 Elem. Math. 58 (2003) H C D Λ A B We shall prove this in the upper half plane model, taking D to be the geodesic line through 0 and (hence H and Λ will appear as Euclidean half-lines, or rays, through 0). Let us first prove the following Lemma Let OΩ be a line in the Euclidean plane and let X, Y, Z lie on a circle centered at Ω. Project X, Y, Z onto OΩ and denote by x, y, z the corresponding linear coordinates with respect to O. Then S := (x y) OZ 2 +(y z) OX 2 +(z x) OY 2 = 0. X Y Z O x Ω y z Indeed, we have S =(x y)( OΩ + ΩZ ) 2 +(y z)( OΩ + ΩX ) 2 +(z x)( OΩ + ΩY ) 2 = 0 + 2 OΩ ((x y) ΩZ +(y z) ΩX +(z x) ΩY )+0 = 2ω((x y)(z ω)+(y z)(x ω)+(z x)(y ω)) = 0 where ω denotes the linear coordinate of Ω. Now in order to prove Theorem 1, let us first replace it by the following, equivalent statement: Theorem 2 Among all triangles with fixed apex C H which intercept a given length l of the hypercycle Λ, the one with shortest basis on D is the isosceles one.

Elem. Math. 58 (2003) 23 The equivalence clearly follows from the monotonicity of the end abscissae of the arc intercepted in Λ, according to the end abscissae of the arc intercepted in D. Let (cos θ, sin θ) be the coordinates of the point C in the upper half plane model, with 0 <θ<π/2 (up to an isometry fixing 0 and, C can indeed be taken on the unit circle). Now H is the Euclidean ray through 0 and C, makinganangleθ with the horizontal direction, and Λ is another ray through 0 making an angle of, say, β where θ<β<π/2. A point M running on Λ at constant speed has coordinates (e t cos β,e t sin β) and, if the hyperbolic line through C and M intersects D at Euclidean height s, wehavebythe lemma: s 2 (cos θ e t cos β)+e 2t (0 cos θ)+1 (e t cos β 0) =0, i.e. (setting 0 < p = cos β<q = cos θ): s 2 = s 2 (t) = e2t q e t p q e t p = et et q p q e t p. Note that this quantity is positive, i.e., e t q 2 + e t p 2 pq e 2t pq > 0 or, equivalently: p 2 + q 2 > 2pq cosh t. (1) Now the interesting quantity, on which the length of the basis depends (strictly) monotonically, appears to be (given some δ>0): ν(t) = s2 (t + δ) s 2 (t δ) = e 2δ et+δ q p q e t+δ p q et δ p e t δ q p = e 2δ et+δ q 2 + e t δ p 2 pq(e 2t + 1) e t δ q 2 + e t+δ p 2 pq(e 2t + 1) = e 2δ eδ q 2 + e δ p 2 2pq cosh t e δ p 2 + e δ q 2 2pq cosh t. Note that this last quantity has positive numerator (see (1) and the fact that 0 < p < q), and is positive: therefore the denominator is positive as well, and we have (omitting the factor e 2δ ) the quotient of two positive quantities whose difference is constant, the numerator being bigger (recall again that 0 < p < q). Such a quotient is strictly decreasing with its numerator, and thus is minimal iff t = 0. It should be added that if any value of t at all does indeed satisfy p 2 + q 2 > 2pq cosh(t ± δ), i.e., ν(t) well-defined, then t = 0 does. Since the hyperbolic line CM appears in that case to be the unit circle, which is perpendicular to the geodesic line 0, we have proved Theorem 1.

24 Elem. Math. 58 (2003) D Λ s( t + δ) s( t) M C H s( t δ) β θ 0 p q Note on Steiner symmetrization: Steiner symmetrization in dimension 2 is the areapreserving process by which a given object is cut into infinitesimal, parallel slices of constant width, each slice being then centered relative to an axis running orthogonally through the pile of slices. The slice separators in the hyperbolic framework, as introduced in [4], are parallel hypercycles, and in the Euclidean plane they are just parallel straight lines; in either case, the area-preserving property can be seen by applying Fubini s theorem. Fig. 1 Hyperbolic Steiner symmetrization It is a well-known fact that Euclidean Steiner symmetrization preserves convexity. We have shown (thus answering a question stated in the introduction of [3]) that this does not hold any more in the hyperbolic plane, since a symmetrized hyperbolic triangle appears to be strictly contained in its convex hull (the hull is the isosceles, optimal triangle which simultaneously maximizes width at every intermediary height). Acknowledgements. I wish to thank Norbert Peyerimhoff for his careful re-reading and many suggestions.

Elem. Math. 58 (2003) 25 References [1] Karp, L.; Peyerimhoff, N.: Extremal properties of the principal Dirichlet eigenvalue for regular polygons in the hyperbolic plane, Archiv der Mathematik, Birkhäuser Verlag, 79 (2002). [2] Peyerimhoff, N.: Simplices of maximal volume or minimal total edge length in hyperbolic space, J. London Math. Soc., Cambridge Univ. Press (2) 66 (2002). [3] Schneider, J.: Über die Symmetrisierung kompakter Mengen im hyperbolischen Raum, Dissertation, Universität Stuttgart, 1986. [4] Schneider, J.: Zum isodiametrischen Problem im hyperbolischen Raum, manuscripta mathematica 60 (1988)4, 437 461. François Guéritaud École Normale Supérieure 45 rue d Ulm F-75005 Paris, France e-mail: gueritau@clipper.ens.fr