PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS)

Similar documents
Review: Newton s Laws

Newton s 3 Laws of Motion

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

Chapter 7 Newton s Third Law

Lecture 5. Dynamics. Forces: Newton s First and Second

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

Chapter 4 Force and Motion

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

Physics 2211 ABC Quiz #3 Solutions Spring 2017

PH211 Chapter 4 Solutions

CHAPTER 4 TEST REVIEW -- Answer Key

PHYS 101 Previous Exam Problems. Force & Motion I

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Chapter 5 Force and Motion

Chapter 5. The Laws of Motion

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r =

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Dynamics; Newton s Laws of Motion

Reading Quiz. Chapter 5. Physics 111, Concordia College

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Chapter Four Holt Physics. Forces and the Laws of Motion

Newton s Laws of Motion and Gravitation

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

PHYSICS 231 Laws of motion PHY 231

Forces and Newton s Laws Notes

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9

Unit 5 Forces I- Newton s First & Second Law

Chapter 3 The Laws of motion. The Laws of motion

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line

equations that I should use? As you see the examples, you will end up with a system of equations that you have to solve

Concepts of Physics. Wednesday, October 14th

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

PSI AP Physics B Dynamics

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

Forces & NEWTON S LAWS HOMEWORK

UNIT-07. Newton s Three Laws of Motion

Can You Snap a Card Out From Under a Coin?

CHAPTER 4 NEWTON S LAWS OF MOTION

Sara Rwentambo. PHYS 1007 AB

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D)

PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

Newton s Laws Student Success Sheets (SSS)

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Physics 1100: 2D Kinematics Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Welcome to Forces an anticipation guide A force is defined as a push or a pull When answering the following true or false statements, offer a

What Is a Force? Slide Pearson Education, Inc.

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01

Forces. Brought to you by:

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively

4 Study Guide. Forces in One Dimension Vocabulary Review

Chapter 4. The Laws of Motion

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Exam 1 is Two Weeks away.here are some tips:

Thursday February 8. Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Chapter 4. Forces and Newton s Laws of Motion. continued

FORCE. Definition: Combining Forces (Resultant Force)

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Physics 207 Lecture 9. Lecture 9

Chap. 4: Newton s Law of Motion

Physics 23 Exam 2 March 3, 2009

Equilibrium & Elasticity

Chapter 4. Forces and Newton s Laws of Motion. continued

5. Forces and Free-Body Diagrams

Old Exam. Question Chapter 7 072

PS113 Chapter 4 Forces and Newton s laws of motion

An Accelerating Hockey Puck

AP Physics 1 - Test 05 - Force and Motion

General Physics I Spring Applying Newton s Laws

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

End-of-Chapter Exercises

Chapter 4 Newton s Laws

66 Chapter 6: FORCE AND MOTION II

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYSICS. Hence the velocity of the balloon as seen from the car is m/s towards NW.

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit.

Concept of Force Challenge Problem Solutions

Forces I. Newtons Laws

PHYS 101 Previous Exam Problems. Kinetic Energy and

Lecture 5. (sections )

Newton s First Law and IRFs

UIC Physics st Midterm Practice Exam. Fall 2014 Best if used by September 30 PROBLEM POINTS SCORE

Name: Unit 4 Newton s 1 st & 3 rd Law

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

Transcription:

!! www.clutchprep.com

FORCE, APPLIED FORCE, TENSION A force is either a push or a pull. Unit = ( ) - We ll represent all forces as a We ll refer to generic forces as forces. - Usually on an object by a person; example: you pulling a box. - If you pull on a rope, the force is called : = NEWTON S LAWS 1 - Tendency to or resist change (in ). - Unless acted upon by a. - Motion (velocity) requires. Acceleration requires. 2 - Can be re-written as: - If two objects are pushed by the same force, the heavier one will accelerate. - So mass is the quantity of, that is, its amount of. 3 - Every action results in a reaction of equal but opposite : - All forces exist in action/reaction pairs. Steps to solve FORCE problems: (1) Draw, (2) Write, (3). EXAMPLE B1: Find the block s mass: PRACTICE B2: Find the acceleration: PRACTICE B3: Find the magnitude of F: M =? 30 N 30 N 4 kg 10 N F 5 kg 20 N a = 6 m/s 2 a = 2 m/s 2 Page 2

FORCE PROBLEMS WITH MOTION #1 Some problems mix forces with motion. We ll use F=ma and the equations of motion: MOTION VARIABLES FORCE VARIABLES EXAMPLE 1: A 20-kg block accelerates from rest to 30 m/s in 6 seconds. What is the average force exerted on the block? EXAMPLE 2: A 5-kg block is initially at rest on a frictionless horizontal surface. If you push on it with a constant horizontal force of 10 N for 4 seconds, calculate the block s (a) displacement, and (b) speed after the 4 seconds. PRACTICE 1: A block of unknown mass is initially at rest on a frictionless horizontal surface. When you push on it with a constant horizontal force of 5 N, the block starts to move and covers 24 m in the first 6 seconds. Find the mass of the block. Page 3

FORCE PROBLEMS WITH MOTION #2 EXAMPLE 1: Two skaters (ma = 40 kg, mb = 50 kg) at rest face each other on frictionless ice. Skater A pushes B with an average force of 200 N towards the +x axis, for 0.5 s. Calculate: (a) the average force that B exerts on A (in what direction?) (b) the speeds of A and B after the 0.5 seconds. UAM EQUATIONS (1) v = v o + a t (2) v 2 = v o 2 + 2 a Δx (3) Δx = v o t + ½ a t 2 *(4) Δx = ½ ( v o + v ) t EXAMPLE 2: A 15-kg crate moving on a horizontal surface with 12 m/s takes 4 s to come to a stop, due to friction with the surface. How much force does friction exert on the crate? PRACTICE 1: A 1,000-kg car leaves a skid mark of 80 m while coming to a stop. If the maximum force the brakes are capable of is 8,000N, find the car s initial velocity before braking. PRACTICE 2: A gun shoots a 10 g bullet out of its 8.0 cm-long barrel with a muzzle speed of 400 m/s. Find the force applied on the bullet by the gun. EXTRA: Find force (magnitude and direction) applied on the gun by the bullet. Page 4

FORCE PROBLEMS: MULTIPLE OBJECTS (X-AXIS) Objects that are connected have the same and v 1 = v 2 = v sys = v a 1 = a 2 = a sys = a Draw complete picture. For each object: (1) Draw, (2) Write. (3) Solve. EXAMPLE 1: Two blocks (masses 2 kg and 3 kg) are initially at rest on a horizontal frictionless surface, connected to each other by a light string. You pull horizontally on the 3 kg block with a constant force F = 15 N. Calculate: (a) the system s acceleration. (b) the tension between the blocks. PRO TIP #1: Begin with the object (usually at the ). 2 kg 3 kg PRO TIP #2: Combine objects to find acceleration. - To find T, plug a into F=ma for the original system. The setup above also applies when a mass moves with another inside (passenger in car) or on top (two stacked blocks). EXAMPLE 2: When a 2940 N force accelerates a 900-kg car, how hard does the seat push on an 80-kg driver? Page 5

PRACTICE: MULTIPLE OBJECTS (X-AXIS) PRACTICE 1: A 0.5 kg rope pulls a 15 kg block across a frictionless horizontal surface. If the block moves with 2 m/s 2, how much force pulls the rope forward? (Hint: if the rope used to pull an object is NOT massless, it acts as an additional object). PRACTICE 2: Two blocks are initially at rest on a horizontal frictionless surface, as shown. You push on the 4 kg block with a constant horizontal force F. If the contact force between the two blocks is 12 N, calculate the magnitude of force F. 4 kg 6 kg PRACTICE 3: A 5,000-kg truck carrying a 300-kg crate on its horizontal flatbed comes to a complete stop from +20 m/s in 40 m. What force (use +/- to indicate direction) must the truck apply on the crate, so that it stops without slipping forward? Page 6

WEIGHT, NORMAL, EQUILIBRIUM Objects near the Earth (or any planet) are attracted to it by a force called : = (usually ). (1) GRAVITY is the natural phenomenon by which objects attract each other. (2) WEIGHT is the force [N] on an object due to gravity, ie. Force of Gravity. (3) g is the acceleration an object in free fall experiences (FG is only force) An object s mass depends on how much matter makes up the object. In most Physics problems, mass remains constant. - But g depends on location: On the Earth s surface, g = 9.8 m/s 2. On the Moon s surface, gm ~= ge / 6 ~= 1.6 m/s 2. EXAMPLE 1: If a bathroom scale says you weigh 70 kg, what is your REAL weight? EXAMPLE 2: An object has mass 5 kg on the Earth. Find its mass and weight on the Moon s surface. PRACTICE 1: If an object weighs 300 N on the surface of the Moon, how much does it weigh on the surface of the Earth? Whenever you push against a surface, the surface pushes back (action/reaction) with a force called ( ). - Normal is a to a push. - Normal means (to the surface): - There s no equation for Normal! It s calculated using ΣF=ma. Whenever forces on an object cancel each other, the object is at - It does NOT mean no motion, it means no ( ). - Eg. A car on cruise control is moving ( ), but its forces ( ). EXAMPLE 3: For each of the following situations, draw a free-body diagram and calculate all forces acting on the object: (a) A 1 kg object sits on top of a table. (b)* A 2 kg object is hung by a light rope. Page 7

EQUILIBRIUM IN THE Y-AXIS An object is at Equilibrium when its cancel a =. - Weight acts on all objects near* the Earth (or any planet/asteroid). Draw Weight first. - Normal acts on an object when the object pushes against a surface. Draw Normal last. EXAMPLE 1: For each of the following situations, draw a free-body diagram and calculate all forces acting on the object: (a) You push down on a 3 kg mass on table with 10 N. (b)* A 2 kg object on a table is pulled up by a string with 5 N. When working with multiple objects, begin with the object (usually at the ). EXAMPLE 2: For each of the following situations, draw a free-body diagram and calculate all forces acting on Each object: (a) (b)* 3 kg 4 kg 3 kg 4 kg EXAMPLE 3: A uniform 10 kg, 2 m-long chain is attached to the ceiling and supports a 20 kg object. Find the tension in: (a) the bottom link of the chain (b) the top link on the chain (c) the middle link on the chain Page 8

MORE 1D EQUILIBRIUM EXAMPLE 1: Both systems below are at rest. Draw free-body diagrams (F.B.D.) and find all forces acting on Each object: (a) Pulley has mass 3 kg: (b)* Pulley is massless: 3 kg 2 kg 2 kg 4 kg Spring scales measure Tension. So the reading on the scale is what tension would be on the cord. - Spring scales are almost always massless. In this case, TLEFT = TRIGHT = Reading on Scale (or TUP = TDOWN). EXAMPLE 2: All systems are at rest. Draw F.B.D s and calculate all forces (pulleys and spring scales are massless): (a) (b)* 3 kg 2kg 4kg (c) (d)* 5kg 5kg 6kg 6kg Page 9

ACCELERATION IN THE Y-AXIS: INTRO Remember, to solve FORCE problems: (1) Draw, (2) Write, (3) Solve. EXAMPLE 1: A 4-kg block is in the air, pulled vertically up by a light string. Find the block s acceleration if (g = 10 m/s 2 ): (a) T = 60 N (b)* T = 20 N (c) T = 40 N (d)* T = 0 N EXAMPLE 2: A 5-kg block is in the air, pulled vertically up by a light string. Find the tension on the string if (g = 10 m/s 2 ): (a) Accelerating down with a constant 3 m/s 2 : (b)* Accelerating up with a constant 4 m/s 2 : (c) Accelerating down with a constant 10 m/s 2 : (d)* Moving up with a constant 7 m/s: Page 10

PRACTICE: ACCELERATION IN THE Y-AXIS PRACTICE 1: The system shown below is pulled up with a constant 100 N. Calculate the tension between the blocks. à EXTRA: Calculate the acceleration of the system (using +/- to indicate if it is up or down). 3 kg 4 kg PRACTICE 2: You are inside a bucket that is connected to a pulley above you by a vertical rope. You pull yourself up by pulling down on the other end of the rope. If the total mass of you plus bucket is 80 kg, how hard must you pull down on the rope to move up with a constant 2 m/s 2? PRACTICE 3: A 70 kg diver steps off a board 9 m above the water and falls vertical to the water, from rest. If his downward motion is stopped 2.0 s after his body fist touches the water, what average upward force did the water exert on him? Page 11

ACCELERATION IN THE Y-AXIS: LANDING & JUMPING EXAMPLE 1: A 7,000 kg spaceship comes to rest (at constant a), from 800 m/s downward, in 90 s, while landing vertically. What braking force must its rockets provide? EXAMPLE 2: A 2 kg purse is dropped from the top of the Leaning Tower of Pisa and falls 56 m before reaching the ground with a speed of 26 m/s. What was the average force of air resistance? EXAMPLE 3: When you jump, your body accelerates up while you push against the floor, causing your legs to stretch out. Assume your legs stretch 50 cm before you come off the floor, and that you come off the floor a max height of 40 cm (treat your body as a point mass). What average force did the floor apply on you while you were jumping, if you have mass 80kg? Page 12

2D FORCES IN HORIZONTAL PLANE Since Forces are Vectors, whenever a Force is at an angle, we must it into its X & Y components. - The Net Force is calculated by Vector Addition FNET =. If pulling parallel to a horizontal surface, then ΣFY = N = : EXAMPLE 1: A 1,500-kg car is on a frictionless horizontal surface. Three horizontal forces pull on it, as shown (top view). Forces are: F1 = 300 N at 37 o above the +x, F2 = 400 N at 53 o below the x, and F3 = 500 N at 37 o clockwise from the y. Find the magnitude and direction of (a) the net force on the car, and (b) the resulting acceleration the car will attain. +y F1 +x F2 F3 EXAMPLE 2: Three friends pull horizontally on ropes that are connected to the same box, which sits at rest on a frictionless horizontal surface. Guy A pulls with 30 N towards the x-axis. Guy B pulls with 40 N towards the y-axis. What must be the magnitude and direction of the force exerted by guy C, so that box does not move? Page 13

2D PUSH / PULL Since Forces are Vectors, whenever a Force is at an angle, we must it into its X & Y components: - Draw all forces on the X Write: ΣFX = ( = 0? ) - Draw all forces on the Y Write: ΣFY = ( = 0? ) If pulling NOT parallel to a horizontal surface, then N mg: EXAMPLE 1: An 8-kg block is initially at rest on a horizontal frictionless surface. You pull on the block with a constant 100 N directed at 37 o above the horizontal. (a) Draw a free-body diagram for the block. (b) Calculate the block s ax and ay. PRACTICE 2: A 6-kg block is initially at rest on a horizontal frictionless surface. You push on the block with a constant 50 N directed at 53 o below the horizontal. Calculate the block s ax and ay. PRACTICE 3: You push a 10-kg block against a wall with a constant 200 N at an angle (shown below). Calculate ax, ay. 53 o Page 14

2D EQUILIBRIUM In Equilibrium problems in 2D, we first decompose all forces: (1) ΣFX = 0 (2) ΣFY = 0 - You can also think of it as: (1) ΣFLEFT = ΣFRIGHT (2) ΣFUP = ΣFDOWN EXAMPLE 1: A 5-kg box is held in place by two light ropes. Draw and calculate all forces on the box. 37 o 5 kg EXAMPLE 2: A 1 m-long, light string is connected to the center of a 2 kg ball below (30 cm in diameter), which rests against a smooth, vertical wall, as shown. Calculate (a) the tension on the string, and (b) the force of the wall on the ball. Page 15

PRACTICE: 2D EQUILIBRIUM PRACTICE 1: For the system below, what is the tension on the longer rope? (Hint: Forces cancel at the middle (red) point) 53 o 37 o 5 kg PRACTICE 2: Two light ropes of same length are connected to the center of two identical 3 kg balls, holding them in the air against each other. If the force between the two balls is 10 N, calculate the tension on the ropes (it is the same for both). EXTRA: Calculate the angle between the two ropes (shown). Page 16