Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University

Similar documents
低電離タングステンイオンの電子捕獲断面積測定 Cross Sections for Electron Capture Collision of W Ions

First Step Benchmark of Inelastic Collision Cross Sections for Heavy Ions using Charge State Evolutions via Target Penetration

Electron-loss and capture cross sections of W and its ions colliding with H and He atoms

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION

ANALYSIS OF NUCLEAR TRANSMUTATION INDUCED FROM METAL PLUS MULTIBODY-FUSION- PRODUCTS REACTION

Atomic and Molecular Data Activities for Fusion Research in JAEA. T. Nakano Japan Atomic Energy Agency

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

Nuclear Physics and Astrophysics

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Main activities of NFRI(DCPP)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

Physics with Exotic Nuclei

Collisional radiative model

Progress in April December 2007 Schedule in Jan. March 2008

Electron impact ionization and dissociation of molecular ions

Lecture 22 Ion Beam Techniques

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION

CHAPTER 6: Etching. Chapter 6 1

Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products Reaction

Progress of the interaction between e - and molecule in Fudan University

3. Gas Detectors General introduction

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager

Semester 2 Final Exam Review. Semester 2 Final Exam Review. South Pasadena Chemistry. Period Date / /

EUV spectra from the NIST EBIT

Atomic and Molecular Databases and Data Evaluation Activities at NIFS

Production of HCI with an electron beam ion trap

A.5. Ion-Surface Interactions A.5.1. Energy and Charge Dependence of the Sputtering Induced by Highly Charged Xe Ions T. Sekioka,* M. Terasawa,* T.

CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Association of H + with H 2 at Low Temperatures

and excitation in ion-h, He collisions in the energy range of kev/amu

Extrel Application Note

Proportional Counters

Status of the magnetic spectrometer PRISMA

Electron Arrangement - Part 2

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

Anharmonicity and Quantum Effect in Thermal Expansion of an Invar Alloy

8. Relax and do well.

The KATRIN experiment

Electron Collision Excitation of the Lower Ar I and Xe I Levels

Ionization Techniques Part IV

Last 4 Digits of USC ID:

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER

Application Note GA-301E. MBMS for Preformed Ions. Extrel CMS, 575 Epsilon Drive, Pittsburgh, PA I. SAMPLING A CHEMICAL SOUP

Chapter 12: Chemistry of Solutions

2. For the following two compounds between oxygen and hydrogen: 3. Tell what discoveries were made by each of the following scientists:

PHOTOELECTRON SPECTROSCOPY PROBLEMS:

X-ray Spectroscopy on Fusion Plasmas

Theoretical approaches to electronimpact

Research and Development of a Compact Fusion Neutron Source for Humanitarian Landmine Detection

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

Data Production and Evaluation at CRAAMD

Laser Spectroscopy on Bunched Radioactive Ion Beams

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR FOR FUSION

Analysis By Time-Of-Flight Secondary Ion Mass Spectroscopy or Nuclear Products In Hydrogen Penetration Through Palladium

Nuclear Instruments and Methods in Physics Research A

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode

Ion Implanter Cyclotron Apparatus System

EXCESS HEAT PRODUCTION IN Pd/D DURING PERIODIC PULSE DISCHARGE CURRENT IN VARIOUS CONDITIONS

PHITS calculation of the radiation field in HIMAC BIO

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

RCNP cyclotron facility

Chapter 13 Nuclear physics

CHEM- 457: Inorganic Chemistry

Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy

Recent CCC progress in atomic and molecular collision theory

Charge State Breeding for the. at TRIUMF

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

GANIL / SPIRAL1 / SPIRAL2

RITU and the GREAT Spectrometer

Partial Energy Level Diagrams

THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important ones are...

DETECTION OF ANOMALOUS ELEMENTS, X-RAY AND EXCESS HEAT INDUCED BY CONTINUOUS DIFFUSION OF DEUTERIUM THROUGH MULTI-LAYER CATHODE (Pd/CaO/Pd)

Bonds in molecules are formed by the interactions between electrons.

Development of the UNILAC towards a Megawatt Beam Injector

Simulation of the cathode surface damages in a HOPFED during ion bombardment

Ion-beam techniques. Ion beam. Electrostatic Accelerators. Van de Graaff accelerator Pelletron Tandem Van de Graaff

KEK isotope separation system for β-decay spectroscopy of r-process nuclei

NEUTRINO DINEUTRON REACTIONS (LOW-ENERGY NUCLEAR REACTIONS INDUCED BY D 2 GAS PERMEATION THROUGH PD COMPLEXES. Y. IWAMURA EFFECT)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

Fluctuation Suppression during the ECH Induced Potential Formation in the Tandem Mirror GAMMA 10

Chapter 1. I- Fill the following table. Element symbol and the mass no. n p n n n e. number. II - Choose the correct answer for the following: Ca-40

CHEM 172 EXAMINATION 1. January 15, 2009

D) g. 2. In which pair do the particles have approximately the same mass?

I. CONCEPT OF CHEMICAL KINETICS A. DESCRIBING RATES OF REACTION B. FACTORS AFFECTING RATES OF REACTION C. MEASUREMENT OF REACTION RATES

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Fig.1 Pyrex glass cell

1.1 Atomic structure. The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies

Photon Interaction. Spectroscopy

Spin-resolved photoelectron spectroscopy

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Repetition: Practical Aspects

Transcription:

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University Joint IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, National Fusion Research Institute, Daejeon, 5 Sep.. 2012

1988-1994 C 1,2,3+ + H 2, CO 2, CH 4, C 2 H 6, C 3 H 8 Energy = (0.5) 5-32 kev 1995-1997 Cr 1,2+ + He, Ne, Ar, Kr, H 2, CO, CO 2, CH 4, C 2 H 6, C 3 H 8 Be 1,2+ + He, Ne, Ar, Kr, H 2, CO, CO 2, CH 4, C 2 H 6, C 3 H 8 1998-2000 Ni 1,2+ + He, Ne, Ar, Kr, H 2, CO, CO 2, N 2, CH 4, C 2 H 6, C 3 H 8 2001-2004 Fe 1,2+ + He, Ne, Ar, Kr, H 2, CO, CO 2, N 2, CH 4, C 2 H 6, C 3 H 8 Be 1,2+ + He, Ne, Ar, Kr, H 2, CO, CO 2 B 1,2+ + He, Ne, Ar, Kr, H 2, CO, CO 2 2005-2008 - present W +, W 2+ + He, Ne, Ar, Kr, H 2, D 2, N 2, CH 4, C 2 H 6, C 3 H 8 IAEA CRP on Atomic Data for Heavy Element Impurities (2005 2009) required data for elements with atomic mass 13; (Ar, Kr, Xe), Si, Cl, Cr, Fe, Ni, Cu, Mo and W and CRP for W continues until 2014.

Only two Experimental papers available except ours. Meyer et al. at 8.5, 11 MeV in PRA 19, 515 (1979). W q+ + H, H2, Ar (q = 4 15) Kheyrandish, Armour and Jones at 40 kev in Vacuum 34, 269 (1984). W + + Ar (0.7 1.0) x 10-16 cm 2?

Pump beam 0.9 MeV (20 kev/u) CO 2 + Accel. HV < 16 KV Neutral particle rejector Accelerating electrodes Deflector Einzel lens Collision cell Base Pressure < 3 10 6 Pa Signal 1 W Wire Ion source chamber Wien Fflter MCP Biased resistive anode Collision chamber Signal 2

Ion Yield 7.5 kev W + Extraction 1E+4 1E+3 WO + W + 1E+2 W 2 + WO 2 + W 2+ 1E+1 1E+0 0 256 512 768 1024 Wien Filter Electric Field q m

Rate equation for W i+ intensity where Relative intensity of W i+ ion Target thickness (= Density Length in /cm 2 ) Charge transfer cross section (cm 2 ) W j+ W i+ Under the single collision condition, these simultaneous equations reduce to where I i : ji : F :, I1, 0 2 I : I 2 I I df i d Intensity of W 2+, W + and W 0, respectively. j i i i F F - F 1,, j ji i ij 0 2 10, 12 1 I0 I2 I1 I0 I,

Growth curve for 5 kev W + Bench mark for 7.5 kev H + + H 2 collision I 2 I I 0 10 1 I0,

Electron capture cross sections for C q+ ions (q=1 4) from H2, CH 4, C 2 H 6, C 3 H 8, and CO 2 targets A. Itoh et al., J. Phys. Soc. Jpn 64, 3255 (1995)

10-15 10-16 He Ne Ar Kr C r o s s S e c t i o n (cm 2 ) 10-17 10-18 10-15 10-16 +, 2+ (a) Be +, 2+ (b) B H 2 CH 4 C 2 H 6 C 3 H 8 CO CO 2 10-17 10 21 10-18 +, 2+ (a') Be +, 2+ (b') B 20 theories 0.3 1.0 5.0 0.3 1.0 5.0 E n e r g y (kev/u) M. Imai et al., J. Plasma Fusion Res. SERIES Vol.7, pp.323-326 (2006)

10-15 10 10-16 21 20 Layton et al. He Ar Kr C r o s s S e c t i o n (cm 2 ) 10-17 10-18 10-19 10-15 10-16 10-17 (a) Fe + (b1) Ni + H 2 CH 4 C 2 H 6 C 3 H 8 CO CO 2 N 2 (b2) Ni 2+ 10-18 10-19 (a') Fe + (b1') Ni + (b2') Ni 2+ 50 100 1000 10 50 100 100 E n e r g y (ev/u) M. Imai et al., J. Plasma Fusion Res. SERIES Vol.7, pp.323-326 (2006)

Cross Section (cm 2 ) Cross Section (cm 2 ) 10 kev W + Single Electron Capture 5 kev W + Single Electron Capture C 2 H 6 C 2 H 6 10-16 CH 4 10-16 Kr Ar CH 4 10-17 N 2 IP -4.99 10-17 10-18 H 2 IP -9.18 Ne (7.5 kev) He 10 15 20 25 Target Ionization Potential (ev) 10-18 IP -17.3 10 15 20 25 Target Ionization Potential (ev)

Cross Section (cm 2 ) 15 kev W 2+ Single Electron Capture C 2 H 6 10-15 CH 4 Kr 10-16 He 10-17 10 15 20 25 Target Ionization Potential (ev)

I. Yu Tolstikhina et al., JPB 45 (2012) 145201.

Single Electron Capture Cross Sections for W + Ions 10-15 Cross Section (cm 2 ) 10-16 10-17 H 2 D 2 CH 4 C 2 H 6 C 3 H 8 10-18 5.0 7.5 10.0 12.5 Energy (kev)

Cross Section (cm 2 ) Cross Section (cm 2 ) 10 kev W + Single Electron Capture 5 kev W + Single Electron Capture C 2 H 6 C 2 H 6 10-16 CH 4 10-16 Kr Ar CH 4 10-17 N 2 IP -4.99 10-17 10-18 H 2 IP -9.18 Ne (7.5 kev) He 10 15 20 25 Target Ionization Potential (ev) 10-18 IP -17.3 10 15 20 25 Target Ionization Potential (ev)

Cross Section (cm 2 ) Cross Section (cm 2 ) 10 kev W + Single Electron Capture 5 kev W + Single Electron Capture C 3 H 8 C 2 H 6 10-16 CH 4 10-15 C 3 H 8 Kr Ar C 2 H 6 10-17 N 2 H 2 IP -4.99 10-16 IP -19.86 CH 4 D 2 IP -11.64 Ne (7.5 kev) He D 2 H 2 10-18 10 15 20 25 Target Ionization Potential (ev) 10-17 10 15 20 25 Target Ionization Potential (ev)

Cross Section (cm 2 ) 1E-13 1E-14 H + + H (1s mostly) 1E-15 1E-16 1E-17 1E-18 Elastic Excitation to H(2s, 2p) Excitation to H(n=2,3,4) Target Ionization 2p 2s n=2 n=3 n=4 1E-19 Capture (total) Capture into H(2s, 2p) 1E-20 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 Collision Energy (ev/u)

Empirical scaling law for exothermic electron capture cross-sections (at low-energy limit) by A. Mueller and E. Salzborn (1977) IP -2.76 for single capture IP -2.80 for double capture IP -2.89 for triple capture IP -3.03 for 4-fold capture by T. Kusakabe et al. (1986) IP -2.0 for single capture by I. Yamada et al. (1999) IP -1.59 for single capture

1.E-14 1.E-15 1.E-16 1.E-17 1.E-18 1.E-19 0 5 10 15 20 25 30 W σ10 (10 kev) W σ21 Ni σ10 Ni σ21 Fe σ10 Fe σ21 B σ10 B σ21 Be σ10 Be σ21

1.E-14 1.E-15 1.E-16 1.E-17 1.E-18 1.E-19-10 -5 0 5 10 15 20 IP ΔIP W σ 10 @ 10 kev -4.99-2.82 W σ 21 @ 15 kev -3.77 W σ10 (10 kev) Ni σ 10 @ 15 kev -5.24-3.00 W σ21 Ni σ 21 @ 15 kev -9.23 Ni σ10 Fe σ 10 @ 15 kev Fe σ 21 @ 15 kev B σ 10 @ 15 kev B σ 21 @ 15 kev Ni -8.97 σ21 Fe -0.77 σ10 Fe -7.77 σ21 B σ10-3.14-5.08-4.17-1.04 B σ21 Be σ 10 @ 15 kev -6.27-2.84 Be σ10 Be σ 21 @ 15 kev -8.26 Be σ21

1.E-14 1.E-15 1.E-16 1.E-17 1.E-18 W σ10 (10 kev) W σ21 Ni σ10 Ni σ21 Fe σ10 Fe σ21 1.E-19 0 5 10 15 20 25 30

1.E-14 1.E-15 1.E-16 1.E-17 1.E-18 IP ΔIP W σ 10 @ 10 kev -11.64-4.55 W σ 21 @ 15 kev -8.33 Ni σ 10 @ 15 kev -8.66-3.56 Ni σ 21 @ 15 kev -5.48 W σ10 (10 kev) Fe σ 10 @ 15 kev Fe σ 21 @ 15 kev W σ21-7.88 Ni σ10-1.93 Ni σ21 Fe σ10 Fe σ21-3.05 1.E-19-10 -5 0 5 10 15 20

1.E-14 1.E-15 1.E-16 1.E-17 1.E-18 1.E-19-10 -5 0 5 10 15 20 W σ10 (10 kev) W σ21 W σ10 Ni σ10 (10 kev) W σ21 Ni σ21 Ni σ10 Fe σ10 Ni σ21 Fe σ21 Fe σ10 B σ10 Fe σ21 B σ21 Be σ10 Be σ21

Absolute total single electron capture cross-sections for W+ and W2+ ions were derived experimentally. Cross-sections (for these endothermic collisions) showed steep dependence on the target ionization potential, which is different for rare-gas and molecular gas targets. No characteristic target isotope effect was observed in the energy range > 5 kev. Anomalous energy dependence in low-energy region has been observed for the first time. Cross-section scaling on ΔIP (Q-value) might be possible.