Recent progress on single-mode quantum cascade lasers

Similar documents
THz QCL sources based on intracavity difference-frequency mixing

High power and single frequency quantum cascade lasers for chemical sensing

High power and single frequency quantum cascade lasers for chemical sensing

InGaAs-AlAsSb quantum cascade lasers

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Stimulated Emission Devices: LASERS

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

High Power Diode Lasers

Infrared Quantum Cascade Laser

Quantum Cascade laser for biophotonics

Semiconductor Lasers II

Quantum cascade (QC) lasers, invented in 1994 by J. Faist,

3-1-1 GaAs-based Quantum Cascade Lasers

Emission Spectra of the typical DH laser

External cavity terahertz quantum cascade laser sources based on intra-cavity frequency

Signal regeneration - optical amplifiers

Tunable GaN-Based Laser Diode

Testing an Integrated Tunable Quantum Cascade Laser

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Nonlinear optics with quantum-engineered intersubband metamaterials

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Sample Grating Distributed Feedback Quantum Cascade Laser Array

QUANTUM CASCADE LASERS: COMPACT WIDELY TAILORABLE LIGHT SOURCES FROM THE MID-INFRARED TO THE FAR INFRARED FEDERICO CAPASSO

High performance THz quantum cascade lasers

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Quantum-cascade lasers without injector regions

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Quantum cascade lasers with an integrated polarization mode converter

Broadband Quantum-Dot/Dash Lasers

Temperature dependence of the frequency noise in a mid-ir DFB quantum cascade laser from cryogenic to room temperature

InAs-based distributed feedback interband cascade lasers

Workshop on optical gas sensing

Thermal and electronic analysis of GaInAs/AlInAs mid-ir

Gain competition in dual wavelength quantum cascade lasers

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application

Oscillateur paramétrique optique en

Distributed feedback semiconductor lasers

Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

Optical Nonlinearities in Quantum Wells

Multi-wavelength operation and vertical emission in THz quantum-cascade lasers*

Double-waveguide quantum cascade laser

Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

High-brightness tapered quantum cascade lasers

Photonics applications II. Ion-doped ChGs

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

MEASUREMENT of gain from amplified spontaneous

Lasers. Stimulated Emission Lasers: Trapping Photons Terahertz Lasers Course Overview

Wavelength Stabilized High-Power Quantum Dot Lasers

Unlike the near-infrared and visible spectral ranges, where diode lasers provide compact and reliable sources,

Spectroscopic Applications of Quantum Cascade Lasers

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Devices. Light absorption and emission. Transitions between discrete states

Advanced techniques Local probes, SNOM

S. Blair February 15,

EE 6313 Homework Assignments

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Vertically Emitting Microdisk Lasers

Modification of optical fibers using femtosecond laser irradiation

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Pressure and Temperature Dependence of Threshold Current in Semiconductor Lasers Based on InGaAs/GaAs Quantum-Well Systems

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

GaN-based Devices: Physics and Simulation

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS

Semiconductor Lasers for Optical Communication

Frontiers in quantum cascade laser based analysis of greenhouse gas stable isotopes

A microring multimode laser using hollow polymer optical fibre

New Concept of DPSSL

Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes

Fiber Lasers. Chapter Basic Concepts

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics

MID-INFRARED QUANTUM CASCADE LASERS

Dmitriy Churin. Designing high power single frequency fiber lasers

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells

Terahertz Lasers Based on Intersubband Transitions

(Al,In)GaN laser diodes in spectral, spatial, and time domain: near-field measurements and basic simulations

Electrically Driven Polariton Devices

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon

Recent progress in development of mid-ir interband cascade lasers

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Terahertz sensing and imaging based on carbon nanotubes:

THREE-dimensional electronic confinement in semiconductor

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Reflectivity and photoluminescence studies in Bragg reflectors with absorbing layers

Quantum Dot Lasers. Jose Mayen ECE 355

Principles of Mode-Hop Free Wavelength Tuning

High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback

SEMICONDUCTOR ring or microdisk lasers have been

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

SUPPLEMENTARY INFORMATION

Harmonic Frequency Combs of Quantum Cascade Lasers: Origin, Control, and Prospective Applications. Presented by:

EE 472 Solutions to some chapter 4 problems

Transcription:

Recent progress on single-mode quantum cascade lasers B. Hinkov 1,*, P. Jouy 1, A. Hugi 1, A. Bismuto 1,2, M. Beck 1, S. Blaser 2 and J. Faist 1 * bhinkov@phys.ethz.ch 1 Institute of Quantum Electronics, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland 2 Alpes Lasers SA, Neuchâtel, Switzerland

1. Introduction 2. Recent developments a. Low electrical dissipation b. Master-oscillator power-amplifier (MOPA) c. Dual color DFBs 3. Conclusion InP:Fe insulator Active InP region cladding 2

1. Introduction 2. Recent developments a. Low electrical dissipation b. Master-oscillator power-amplifier (MOPA) c. Dual color DFBs 3. Conclusion InP:Fe insulator Active InP region cladding 3

1.1 Interband vs. intersubband Interband (IB) Intersubband (ISB) Absorption above E = h Absorption at E = h Broad absorption features Narrow absorption features Long lifetime (>1 ns) Short lifetime (<1 ps) Very high radiative efficency Very low radiative efficiency Transition energy <->gap Transition energy <->QW thickness 4

1.1 What is a Quantum Cascade Laser * Mid-IR/THz emitting semiconductor laser (3 300 µm) Based on intersubband transitions l: tailorable by bandstructure engineering Cascade of optical transition regions * Faist et al., Science 264, 553 (1994) 5

1.2 Motivation Spectroscopy of different molecules: 6

transmittance 1.2 Motivation Spectroscopy of different molecules: 10% N 2 O, 0.5 cm, 296 K, 1013 mbar 7

transmittance 1.2 Motivation Spectroscopy of different molecules: 10% N 2 O, 0.5 cm, 296 K, 1013 mbar asymetric (2335 cm -1 ) bending (670 cm -1 ) 100 ppm CO 2, 35 cm, 296 K, 1013 mbar 8

1.3 Properties Key properties for detection systems: i. 9

1.3 Properties Key properties for detection systems: i. 10

1.3 Properties Key properties for detection systems: i. single-mode device mode-selection 11

1.3 Properties Key properties for detection systems: i. single-mode device mode-selection ii.a tunability 12

1.3 Properties Key properties for detection systems: i. single-mode device mode-selection ii.a tunability ii.b low el. dissipation 13

1.3 Properties Key properties for detection systems: i. single-mode device mode-selection ii.a tunability ii.b low el. dissipation ii.c high power 14

1.3 Properties Key properties for detection systems: i. single-mode device mode-selection ii.a tunability ii.b low el. dissipation ii.c high power ii.d multicolor 15

1.3 Properties Key properties for detection systems: i. single-mode device mode-selection ii.a tunability ii.b low el. dissipation ii.c high power ii.d multicolor 16

1.4 Mode control in semiconductor-based lasers Fabry-Pérot devices broad spectral emission wavelength (µm) 4,75 4,70 4,65 4,60 1,0 0,9 FP - 1% dc norm. intensity (arb. units) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 wavenumbers (cm -1 ) 17

1.4 Mode control in semiconductor-based lasers Fabry-Pérot devices broad spectral emission 1,1 1,0 wavelength (µm) 4,6825 4,6800 4,6775 4,6750 4,6725 4,6700 FP - 1% dc 0,9 norm. intensity (arb. units) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 2135 2136 2137 2138 2139 2140 2141 2142 wavenumbers (cm -1 ) 18

1.4 Mode control in semiconductor-based lasers Fabry-Pérot devices broad spectral emission 1,1 1,0 0,9 wavelength (µm) 4,6825 4,6800 4,6775 4,6750 4,6725 4,6700 FP - 1% dc DFB - CW norm. intensity (arb. units) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 2135 2136 2137 2138 2139 2140 2141 2142 wavenumbers (cm -1 ) 19

1.4 Mode control in semiconductor-based lasers 1,1 1,0 0,9 Fabry-Pérot devices broad spectral emission wavelength (µm) 4,6825 4,6800 4,6775 4,6750 4,6725 4,6700 FP - 1% dc DFB - CW DFB devices single-mode emission Sideview (SEM) norm. intensity (arb. units) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 2135 2136 2137 2138 2139 2140 2141 2142 wavenumbers (cm -1 ) 20

1.4 Mode control in semiconductor-based lasers 1,1 1,0 0,9 Fabry-Pérot devices broad spectral emission wavelength (µm) 4,6825 4,6800 4,6775 4,6750 4,6725 4,6700 FP - 1% dc DFB - CW DFB devices single-mode emission Sideview (SEM) norm. intensity (arb. units) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 2135 2136 2137 2138 2139 2140 2141 2142 wavenumbers (cm -1 ) 21

1.5 Distributed feedback gratings DFB-QCL: different orders N, N λ 2 = n eff Λ 1st order 2nd order 3rd order J. Faist et al., APL 70 (1997) D. Hofstetter et al., PTL 12 (2000) Q. Lu et al., APL 98 (2011) B. Hinkov et al., El. Lett. 48 (2012) D. Hofstetter et al., APL 75 (1999) S. Kumar et al., Opt. Express (2007) E. Mujagic et al., APL 93 (2008) M. I. Amanti et al., Nature Photon. 3 (2009) J. P. Commin et al., APL 97 (2010) 22

1.6 External cavity systems Main components QCL Collimating lens Diffraction grating Littrow configuration Bragg condition tuning Front/back extraction 23

1.7 Singlemode emission Key properties for detection systems: i. single-mode device mode-selection ii.a ii.b ii.c ii.d low el. dissipation high power multicolor tunability 24

1.3 Properties Key properties for detection systems: i. single-mode device mode-selection ii.a tunability ii.b low el. dissipation ii.c high power ii.d multicolor 25

1.8 Performance-discussion of QC lasers As expected for a layered semiconductor media: G th, > G th,, growth direction G th, G th, Typically G th, / G th, = 3.3* *A. Lops et al., J. Appl. Phys. 100 (2006) 33

1.8 Performance-discussion of QC lasers As expected for a layered semiconductor media: G th, > G th,, T max = 385K T max = 362K growth direction G th, T max = 358K T max = 341K G th, Typically G th, / G th, = 3.3* *A. Lops et al., J. Appl. Phys. 100 (2006) A. Wittman, PhD thesis 18363, ETHZ (2009) 34

1. Introduction 2. Recent developments a. Low electrical dissipation b. Master-oscillator power-amplifier (MOPA) c. Dual color DFBs 3. Conclusion InP:Fe insulator Active InP region cladding 35

2. Recent developments: Widely tunable devices (ext. cavity): A. Hugi et al., Semicond. Sci. Technol. 25, 083001 (2010) 36

2. Recent developments: Widely tunable devices (ext. cavity): Pulsed operation: 432 cm -1 tuning (7.5mm 11.4mm) 1 W peak power A. Hugi et al., Appl. Phys. Lett. 95, 061103 (2009) A. Hugi et al., Semicond. Sci. Technol. 25, 083001 (2010) 37

2. Recent developments: Widely tunable DFBs Sampled DFB gratings Two different grating periods l ~ 4.8 µm 50 cm -1 gap-free tuning 100 mw CW power S. Slivken et al., Appl. Phys. Lett. 100 (2012) 38

2. Recent developments: Widely tunable DFBs Sampled DFB gratings Two different grating periods l ~ 4.8 µm 50 cm -1 gap-free tuning 100 mw CW power S. Slivken et al., Appl. Phys. Lett. 100 (2012) l ~ 8.5 µm 63 cm -1 tuning 100-500 mw peak power T. Mansuripur et al., Opt. Express 20 (2012) 39

1. Introduction 2. Recent developments a. Low electrical dissipation b. Master-oscillator power-amplifier (MOPA) c. Dual color DFBs 3. Conclusion InP:Fe insulator Active InP region cladding 40

2. Recent developments: a. Low electrical dissipation 1.5 cm g 41

2. Recent developments: a. Low electrical dissipation P th,diss ~ 1.5 W, P diss,max ~ 5 W 1.5 cm g Wittmann et al., Photon. Technol. Lett. 21 (2009) 42

2. Recent developments: a. Low electrical dissipation P th,diss ~ 1.5 W, P diss,max ~ 5 W 1.5 cm g Wittmann et al., Photon. Technol. Lett. 21 (2009) P th,diss ~ 1.1 W, P diss,max > 1.6 W R. Cendejas et al., Photon. J. 3 (2011) 43

2. Recent developments: a. Low electrical dissipation P th,diss ~ 1.5 W, P diss,max ~ 5 W 1.5 cm g Wittmann et al., Photon. Technol. Lett. 21 (2009) P th,diss ~ 1.1 W, P diss,max > 1.6 W P th,diss ~ 0.7 W, P diss,max ~ 2.4 W R. Cendejas et al., Photon. J. 3 (2011) F. Xie et al., J. selected topics in Quantum. Electron. 18 (2012) 44

2. Recent developments: a. Low electrical dissipation P th,diss ~ 1.5 W, P diss,max ~ 5 W 1.5 cm g Wittmann et al., Photon. Technol. Lett. 21 (2009) P th,diss ~ 1.1 W, P diss,max > 1.6 W P th,diss ~ 0.7 W, P diss,max ~ 2.4 W P th,diss ~ 0.7 W, P diss,max ~ 1.4 W R. Cendejas et al., Photon. J. 3 (2011) F. Xie et al., J. selected topics in Quantum. Electron. 18 (2012) B. Hinkov et al., El. Lett. 48 (2012) 45

2a. Low dissipation AR design MBE: 35 x In 0.635 Ga 0.365 As / Al 0.665 In 0.335 As on InP substrate ~ 6 µm 46

2a. Low dissipation AR design MBE: 35 x In 0.635 Ga 0.365 As / Al 0.665 In 0.335 As on InP substrate Genetic algorithm for optimized AR-design ~ 6 µm 47

2a. Low dissipation AR design MBE: 35 x In 0.635 Ga 0.365 As / Al 0.665 In 0.335 As on InP substrate Genetic algorithm for optimized AR-design Wallplug efficiency as merit function ~ 6 µm 48

2a. Low dissipation AR design MBE: 35 x In 0.635 Ga 0.365 As / Al 0.665 In 0.335 As on InP substrate Genetic algorithm for optimized AR-design Wallplug efficiency as merit function ~ 6 µm A. Bismuto et al., Appl. Phys. Lett. 101 (2012) 49

2a. Low dissipation AR design MBE: 35 x In 0.635 Ga 0.365 As / Al 0.665 In 0.335 As on InP substrate Genetic algorithm for optimized AR-design Wallplug efficiency as merit function ~ 6 µm A. Bismuto et al., Appl. Phys. Lett. 101 (2012) 50

2a. Reduce the electrical dissipation: Buried heterostructure: better thermal management reduced laser threshold Frontview (SEM) Insulating InP Insulating InP ~ 3 µm ~ 3 µm 51

2a. Reduce the electrical dissipation: Buried heterostructure: better thermal management reduced laser threshold Small devices: (2.5-5 µm x < 2 mm) short : less current consumption strong gratings Frontview (SEM) Insulating InP Insulating InP ~ 3 µm ~ 3 µm A 0nLpl(2g 32) Ith tot q0n 2 2 4 q z eff 0 32 therm 52

2a. Reduce the electrical dissipation: Buried heterostructure: better thermal management reduced laser threshold Small devices: (2.5-5 µm x < 2 mm) short : less current consumption strong gratings narrow: lat. mode suppression heat-extraction Frontview (SEM) Insulating InP ~ 3 µm ~ 3 µm Insulating InP A 0nLpl(2g 32) Ith tot q0n 2 2 4 q z eff 0 32 therm 53

2a. Reduce the electrical dissipation: Buried heterostructure: better thermal management reduced laser threshold Small devices: (2.5-5 µm x < 2 mm) short : less current consumption strong gratings narrow: lat. mode suppression heat-extraction Frontview (SEM) Insulating InP ~ 3 µm ~ 3 µm Insulating InP A 0nLpl(2g 32) Ith tot q0n 2 2 4 q z eff 0 32 therm 54

2a. Reduce the electrical dissipation: Buried heterostructure: better thermal management reduced laser threshold Small devices: (2.5-5 µm x < 2 mm) short : less current consumption strong gratings narrow: lat. mode suppression heat-extraction Frontview (SEM) Insulating InP ~ 3 µm ~ 3 µm Insulating InP A 0nLpl(2g 32) Ith tot q0n 2 2 4 q z eff 0 32 therm 55

2a. Reduce the electrical dissipation: Low AR-doping: 6.7x10 10 cm -2 Target values: P opt > 5 mw, el. power < 1.5 W, (CW, RT) 56

2a. Reduce the electrical dissipation: Low AR-doping: 6.7x10 10 cm -2 Target values: P opt > 5 mw, el. power < 1.5 W, (CW, RT) P th, diss = 729 1064 mw P opt > 5 mw up to ~313 K B. Hinkov et al., El. Lett. 48 (2012) 57

2a. Reduce the electrical dissipation: Low AR-doping: 6.7x10 10 cm -2 Target values: P opt > 5 mw, el. power < 1.5 W, (CW, RT) P th, diss = 729 1064 mw P opt > 5 mw up to ~313 K B. Hinkov et al., El. Lett. 48 (2012) High T 0 = 245 K (interband lasers typically ~ 55K * ) * W. W. Bewley et al., Opt. Express 20 (2012) 58

2a. Reduce the electrical dissipation: Low AR-doping: 6.7x10 10 cm -2 Target values: P opt > 5 mw, el. power < 1.5 W, (CW, RT) P th, diss = 729 1064 mw P opt > 5 mw up to ~313 K P opt > 25 mw (323 K) h wallplug ~ 4% B. Hinkov et al., El. Lett. 48 (2012) 59

2a. Results II: spectra and tunability Temp.: F I X E D P O W E R B. Hinkov et al., El. Lett. 48 (2012) 60

2a. Results II: spectra and tunability Temp.: Power: Freitag, 9. August 2013 61 F I X E D P O W E R F I X E D T E M P E R A T U R E B. Hinkov et al., El. Lett. 48 (2012) B. Hinkov / IQE Faist / TDLS Moscow (2013)

2a. Results II: spectra and tunability Temp.: Power: Single-mode + mode hop free tuning (SMSR >27 db) Freitag, 9. August 2013 62 F I X E D P O W E R F I X E D T E M P E R A T U R E B. Hinkov / IQE Faist / TDLS Moscow (2013)

2a. Results III: Thermal conductivity * W 1 1 Gth T A *Beck et al., Science 295, 301 (2002) A T P W T Temp 1 Power 1 G th ~ 1200 W/K cm 2 therm. conduction: ratio of direct heating & current-heating very high G th (junction-up!) junction-down (G th ~ 50% higher) lower power-tuning! 63

1. Introduction 2. Recent developments a. Low electrical dissipation b. Master-oscillator power-amplifier (MOPA) c. Dual color DFBs 3. Conclusion InP:Fe insulator Active InP region cladding 64

2. Recent developments: b. High optical output power 65

2. Recent developments: b. High optical output power CW: P opt = 2.4 W h max = 10% P diss = 20 W Q. Y. Lu et al., Appl. Phys. Lett. 98 (2011) 66

2. Recent developments: b. High optical output power CW: Pulsed: P opt = 2.4 W h max = 10% P diss = 20 W P opt = 2.7 W 10 W array of tapered DFBs duty cycle: 0.025% Q. Y. Lu et al., Appl. Phys. Lett. 98 (2011) P. Rauter et al., Opt. Express 21 (2013) 67

2. Recent developments: b. High optical output power CW: Pulsed: P opt = 2.4 W h max = 10% P diss = 20 W P opt = 2.7 W 10 W array of tapered DFBs duty cycle: 0.025% P opt = 1 W Narrow (~4 µm) single-emitters duty cycle: 1% Q. Y. Lu et al., Appl. Phys. Lett. 98 (2011) P. Rauter et al., Opt. Express 21 (2013) B. Hinkov et al., unpublished 68

2b. How to increase the DFB output power 1 st approach: scale up the length of a DFB device Surface DFB grating (complex coupling) lifts degeneracy (0.4 cm -1 discrimination) κ = 1 Λ Δn n eff k ~ 1.37 cm -1 But weak coupling k needed, very susceptible to defects Q. Y. Lu et al., Appl. Phys. Lett. 98 (2011) 69

2b. MOPA * *M. Troccoli et al., APL 80 (2002) Alternative: two sectional device heatsink DFB DFB: singlemode seed FP: amplifier section FP AR-coating: AR-coating a. suppress FP-selflasing & additional FP-modes within stopband b. suppress spatial hole burning in the FP-section B. Hinkov et al., under review 70

2b. MOPA vs. DFB A. DFB: 5.25 mm, k ~ 1.4 cm -1 Mode-discrimination: bi-mode 0.14 cm -1 (FP-level) 0.1 cm -1 (non-stopband mode) B. MOPA: 5.25 mm (1.25 mm DFB), k ~ 35 cm -1 Mode-discrimination: 2.8 cm -1 (FP-level) 1.6 cm -1 (non-stopband mode) > 1 order of magnitude higher B. Hinkov et al., under review 71

2b. MOPA vs. DFB Spectral coverage depends on: g DFB (λ) α DFB > g(λ max) α FP DFB: g DFB (λ) g(λ max ) > 0.94 MOPA: g DFB (λ) g(λ max ) > 0.49 B. Hinkov et al., under review Courtesy of S. Riedi 72

2b. MOPA vs. DFB Spectral coverage depends on: g DFB (λ) α DFB > g(λ max) α FP DFB: g DFB (λ) g(λ max ) > 0.94 MOPA: g DFB (λ) g(λ max ) > 0.49 B. Hinkov et al., under review Courtesy of S. Riedi 73

2b. MOPA Non-tapered device, 4 µm x (1.25+4) mm + AR-coating P opt,peak = 1 W (1% duty cycle) Continuous tuning (263K - 313K) symm. farfield TM 00 : FWHM (25 / 27 ) B. Hinkov et al., under review 74

1. Introduction 2. Recent developments a. Low electrical dissipation b. Master-oscillator power-amplifier (MOPA) c. Dual color DFB 3. Conclusion InP:Fe insulator Active InP region cladding 75

2. Recent developments: c. Dual color l ~ 5.2 & 8 µm Simultaneous emission C. Gmachl et al., APL 79 (2001) 76

2. Recent developments: c. Dual color l ~ 5.2 & 8 µm Simultaneous emission C. Gmachl et al., APL 79 (2001) 2 electrically separated DFBs l can be adressed individually or in parallel P. Jouy et al., unpublished 77

5.1 Dual color DFBs - concept Dual single-wavelength emitting devices (l/4-shifted) Detection of two different species from one optical waveguide Species can be separated by very different wavelengths InP:Fe insulator Active InP region cladding 78

5.2 Dual color DFBs - results Two color active region: 1600 cm -1 (NO 2 ) & 1900 cm -1 (NO) 2 electrically separated sections Both wavelengths can be addressed individually or in parallel 300 cm -1 separation 79

1. Introduction 2. Recent developments a. Low electrical dissipation b. Master-oscillator power-amplifier (MOPA) c. Dual color DFBs 3. Conclusion InP:Fe insulator Active InP region cladding 80

6. Conclusion: Overview of recent developments in DFB QC lasers (tunability, el. dissipation, high output power, dual-wavelength) 3 examples in more detail: 1. low dissipation DFB QCL (< 1W, P opt,cw >> 10 mw) 2. MOPA QCL (new design, P opt,peak ~ 1W untapered) 3. Dual-color DFB QCL (selective dual-l, 300 cm -1 separation) 81