THz QCL sources based on intracavity difference-frequency mixing

Similar documents
Nonlinear optics with quantum-engineered intersubband metamaterials

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

Broadly tunable terahertz differencefrequency generation in quantum cascade lasers on silicon

External cavity terahertz quantum cascade laser sources based on intra-cavity frequency

Recent progress on single-mode quantum cascade lasers

Thermal and electronic analysis of GaInAs/AlInAs mid-ir

High performance THz quantum cascade lasers

THE terahertz (THz) region ( THz) of the electromagnetic

InGaAs-AlAsSb quantum cascade lasers

QUANTUM CASCADE LASERS: COMPACT WIDELY TAILORABLE LIGHT SOURCES FROM THE MID-INFRARED TO THE FAR INFRARED FEDERICO CAPASSO

Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion

Quantum-cascade lasers without injector regions

Infrared Quantum Cascade Laser

Gain competition in dual wavelength quantum cascade lasers

Optical Nonlinearities in Quantum Wells

High Power Diode Lasers

High power and single frequency quantum cascade lasers for chemical sensing

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

High power and single frequency quantum cascade lasers for chemical sensing

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Quantum cascade lasers with an integrated polarization mode converter

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Emission Spectra of the typical DH laser

Broadband Quantum-Dot/Dash Lasers

Survey on Laser Spectroscopic Techniques for Condensed Matter

Workshop on optical gas sensing

3-1-2 GaSb Quantum Cascade Laser

Oscillateur paramétrique optique en

Signal regeneration - optical amplifiers

Quantum Dot Lasers. Jose Mayen ECE 355

Dmitriy Churin. Designing high power single frequency fiber lasers

Stimulated Emission Devices: LASERS

3-1-1 GaAs-based Quantum Cascade Lasers

High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Vertically Emitting Microdisk Lasers

Short wavelength and strain compensated InGaAs-AlAsSb. AlAsSb quantum cascade lasers. D.Revin, S.Zhang, J.Cockburn, L.Wilson, S.

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

THz Electron Gun Development. Emilio Nanni 3/30/2016

Pressure and Temperature Dependence of Threshold Current in Semiconductor Lasers Based on InGaAs/GaAs Quantum-Well Systems

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters

Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics

THz experiments at the UCSB FELs and the THz Science and Technology Network.

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

Nonlinear Electrodynamics and Optics of Graphene

Unlike the near-infrared and visible spectral ranges, where diode lasers provide compact and reliable sources,

Semiconductor Disk Laser on Microchannel Cooler

EE 6313 Homework Assignments

RESONANT OPTICAL NONLINEARITIES IN CASCADE AND COUPLED QUANTUM WELL STRUCTURES. A Dissertation FENG XIE

Quantum Cascade laser for biophotonics

Terahertz Lasers Based on Intersubband Transitions

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

High-power terahertz radiation from surface-emitted THz-wave parametric oscillator

1.5 μm InAs/InGaAsP/InP quantum dot laser with improved temperature stability

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

Quadratic nonlinear interaction

PART 2 : BALANCED HOMODYNE DETECTION

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall 2014

Ultra-narrow-band tunable laserline notch filter

1300nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature

Electrically Driven Polariton Devices

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application

GaN-based Devices: Physics and Simulation

Theoretical investigation on intrinsic linewidth of quantum cascade lasers. Liu Tao

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Fabrication and Evaluation of In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As/InP Quantum Cascade Lasers

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity

Temperature Effect on THz Quantum Cascade Lasers

Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity

Noise Correlations in Dual Frequency VECSEL

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices

SUPPLEMENTARY INFORMATION

Difference-Frequency Generation in Polaritonic Intersubband Nonlinear Metasurfaces

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Spectroscopic study of transparency current in mid-infrared quantum cascade lasers

Fundamentals of fiber waveguide modes

Efficient Light Scattering in Mid-Infrared Detectors

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

Self-induced transparency modelocking of quantum cascade lasers in the presence of saturable nonlinearity and group velocity dispersion

Quantum cascade (QC) lasers, invented in 1994 by J. Faist,

ECE 484 Semiconductor Lasers

SUPPLEMENTARY INFORMATION

B 2 P 2, which implies that g B should be

AXIOMA experiment. Measurements on Er 3+ :YLF. Guarise Marco. Padova INFN. June 29, 2016

SHORT-WAVELENGTH (λ 3.5 μm) generation in quantum

Singly resonant optical parametric oscillator for mid infrared

A microring multimode laser using hollow polymer optical fibre

Wavelength Stabilized High-Power Quantum Dot Lasers

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

Highly Nonlinear Fibers and Their Applications

Transcription:

THz QCL sources based on intracavity difference-frequency mixing Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin IQCLSW, Sept. 3, 218

Problems with traditional THz QCLs The maximum operating temperature of THz QCLs reported to date vs operating frequency Timeline for the maximum operating temperature achieved by THz QCLs in pulsed mode T max, K 2 175 15 125 1 75 5 25 1 2 3 4 5 Emission frequency, THz T max, K 3 25 2 15 1 5 2 4 6 8 1 12 14 16 18 5137137164164169178186186186199.5 199.5 199.5 199.5 199.5 199.5 199.5 Year B.S. Williams, Nat. Photon. 1, 517 525 (27) M.A. Belkin and F. Capasso, Phys. Scr. 9, 1182 (215)

What happens with THz QCLs at higher temperatures Upper laser state lifetime vs temperature [1,2] J th vs temperature for THz QCLs at different frequencies [1,3] Gain does not go to zero even at 3K Frankie et al. APL 112, 2114 (218) [1] B.S. Williams, Nat. Photon. 1, 517 525 (27) [2] M.A. Belkin et al., IEEE J. Sel. Top. Quantum Electron. 15, 952 (29) [3] Y. Chassagneux et al., IEEE Trans. Terahertz Sci. Technol. 2, 83 (212)

Alternative: DFG in mid-ir QCL Pumps Signal ω 1 ω 2 ω THz 1 2 THz = 1-2 Take: 2 THz I THz I I l 3 2n n n c 1 2 3 (2) 2 2 1 2 eff I MW THz l mm pm V 2 (2) 1 / cm, THz 2 3, eff 1, 1 I I THz 1 2.3 1 5

M.A. Belkin, F. Capasso, A. Belyanin et al., Nat. Photon. 1, 288 (27) Design concept: How to get giant (2) in a QCL Take the state-of-the-art mid-infrared QCL design and split the lower laser state State-of-the-art mid-infrared QCL design ( 2 phonon QCL): e - Reduce barrier thickness: Upper laser state E LO E LO e - 2 1 Lower laser state THz Active region Injector

M. Belkin, F. Capasso, A. Belyanin, et al. APL 92, 2111 (28) (2) estimate 3 cm -1 1-4 Laser gain 1 2 3 4 5 1-2 1-3 1-5 1 =8.9 m Assuming 1 mev 1 N e 1 15 cm -3 2 3 4 THz 5 1 12 14 16 18 2 1 =8.9 m 2 =1.5 m, mev (2) 15, pm/v THz =6 m (5 THz)

Other active region designs with giant DFG (2) Dual-upper-state (Hamamatsu) Strain-balanced strong-coupled design (Razeghi) (2) 25, pm/v K. Fujita et al., APL 16, 25114 (215) (2) 25, pm/v Q. Lu et al., Sci. Rep. 6, 23595 (216)

M. Belkin, F. Capasso, A. Belyanin, et al. APL 92, 2111 (28) Refractive index Refractive index Edge-emitting THz DFG-QCLs z x 1 m Mode H x 2, a.u..35.3.25.2.15.1 1 =8.9 m 2 =1.5 m 14 12 1 8 6 4.5 2 3 stages of each QCL structure z y x 1.8 mm 2-3 m.2 mm 6 m Mode H x 2, a.u.. 2 4 6 8 1 12 14.14.12.1.8.6.4 z, m THz =6 m 14 12 1 8 6 4.2 2. 2 4 6 8 1 12 14 z, m l eff =7 m

M. Belkin, F. Capasso, A. Belyanin, et al. APL 92, 2111 (28) Edge-emitting THz DFG-QCLs Intensity, a.u. 2.5 2. 1.5 1..5. 8 6 4 2 6 4 2.3 W 1 W 7 W 3K 25K 8K 2 3 4 5 6 7 8 9 1 11 12 Frequency, THz Conversion efficienty, W/W 2 9 8 7 6 5 4 3 2 1 8 12 16 2 24 28 32 Temperature, K Conversion efficiency W THz /(W 1 W 2 ) 5 W/W 2 (Theoretical estimates: W THz /(W 1 W 2 ) ~ 3 W/W 2 )

THz extraction efficiency Top Contact Active Region Substrate 2mm 5mm THz 1 2 5 @3 labs THz m THz THz l abs Absorption, cm -1 14 12 1 8 6 4 2 InP, n=2x1 16 cm -3 InP, n=5x1 16 cm -3 1 2 3 4 5 Frequency, THz Need to extract THz radiation along the waveguide: - surface-emitting scheme -.. or something else Active region Substrate THz DFG

Leaky THz mode extraction Upper cladding Dual-color MIR pump ω 1, ω 2, χ (2) Undoped substrate THz THz leaky mode propagate into the substrate at an angle θ. Benefits: Directional THz emission Efficient THz extraction Works for any THz frequency THz power scales with device length

Cherenkov THz DFG-QCLs Cherenkov emission P THz ~ χ (2) E 1 E 2 e i(β 1 -β 2 )z x z n MIR g THz MIR 1 2, ng c k sub (ω THz ) Semi-insulating InP 3.37 Index of semi-insulating InP n THz 3.5-3.7 c cos -1 (n g /n sub ) 15-25 θ C K. Vijayraghavan et al., APL 1, 25114 (212) Broadband THz DFG extraction

First demonstration Side current extraction V Facet polishing Upper clad Lower cladding and current extraction S.I. InP ω 1, χ (2) ω 2, χ (2) K. Vijayraghavan et al., APL 1, 25114 (212) Relative Intensity, a.u. 1 μm Regular device 2 Exit Facet 3 Exit Facet -4-2 2 4 Angle, degrees

Far field Vertical Hamamatsu Photonics ~1 o FWHM 1.7 mm X 25 m device Horizontal -4-2 2 4 Angle (degrees)

Optimization of the Cherenkov DFG waveguide Analytical solution: THz polarization in the waveguide Phase distribution goes as z n g THz /c Emission in confined in the waveguide or emitted into the S.I. InP substrate 1 W ~, k, 3 cm W w/ g 2 2 abs k 2 rad C 2 2 rad abs 2 abs rad abs L ~, max k 2 2 for 1 InP, 1.5x1 16 cm -3, 4.5 m @3 THz AR, 4x1 16 cm -3, 3 m InP, 1.5x1 16 cm -3, 4.5 m InGaAs, 1x1 18 cm -3,.2 m S.I. InP K. Vijayraghavan et al., Nature Comm. 4, 221 Position, m -5-1 -15-2 Double-metal waveguide Cherenkov with current-inj. layer Cherenkovw/o current-inj. layer..5 1. 1.5 2. 2.5 3. 3.5 4. H 2, a.u.

Typical performance for DFB Cherenkov devices Frequency (THz) 29 3 31 32 33 34 1 Intenity (a.u.) 95 1 15 11 115 Wavenumber (cm -1 ) 1 Intensity (a.u.) K. Vijayraghavan et al., Nature Comm. 4, 221 (213) 2 3 4 5 6 Frequency (THz)

Typical performance for DFB Cherenkov devices THz Peak Power ( W) 12 9 6 3 THz Pk Power ( W) 12 1 8 6 4 2.. 2. 4. 6. 8. 1. Current Density (ka/cm 2 ) K. Vijayraghavan et al., Nature Comm. 4, 221 (213).6 mw/w 2..1.2.3.4 W x W (W 2 ) 3 mw/w 2 Theoretically 1.7mm-long 25μm-wide device.8.6.4.2 MIR Peak Power (W)

Timeline THz DFG-QCLs on S. I. InP THz peak power (mw) 1 power 1-1 1-2 1-3 1-4 1-5 Edge emission Cherenkov on SI InP Conversion eff. 27 28 211 212 212 213 213 214 215 216 217 218 Year 1 1-1 1-2 1-3 1-4 1-5 MIR-to-THz conversion efficiency (mw/w 2 )

CW operation of Cherenkov DFG-QCLs at RT Q. Lu et al., Sci. Rep.6, 23595 (216)

Emission linewidth of CW DFG-QCLs Beat note between THz emission of a DFG-QCL and a reference THz FC The HEB beat note signal is sent to a real-time FFT Spectrum Analyzer DFG-QCL operated continuous-wave at 8K at 2.5 THz Free-running device, no active frequency stabilization THz DFG-QCL emission linewidth <1 MHz L. Consolino et al., Sci. Adv. 3, e16331 (217) Typical beat note signal of the DFG-QCL with 2 ms integ. time

Single-mode CW DFG-QCL at 2.5 THz 1 µm Buried-heterostructure waveguide W=12 µm, L=2 mm Back-facet with HR coating Buried dual-wavelength DFB gratings for 2.5 THz to be within HEB detector BW Mounted episide-up on Cu heatsink

Linewidth vs. observation time [1] [2] 125 khz @2 µs int. time 1. Vitiello et al., Nature Photon. 6, 525 528 (212) 2. Bartalini et al., Phys. Rev. Lett. 14, 1 4 (21) L. Consolino et al., Sci. Adv. 3, e16331 (217)

Broadly-tunable THz output 2.3-mm-long 22-μm-wide device @ I 4A Y. Jiang et al., J. Opt. 16, 942 (214).

Dielectric properties of SI InP Frequency (THz).3 1 3 5 1 22.5 14. 13.5 ''/1 3.8.4 8 4 '/1 2 Permittivity '' 13. 12.5 1 5 1 3 1 1 1-1 1-1 1-3. -4 25 3 35 InP, T=3 K (cm -1 ) 2 5 1 3 5 1 15 3 75 Wavenumber (cm -1 ) Alyabyeva et al., Sci. Rep. 7, 736 (217) 1 5 1 3 1 1 1-3 Absorption coefficient (cm -1 )

THz peak power ( W) THz loss in SI InP vs THz DFG-QCL performance SI InP absorption coefficient (cm -1 ) 5 4 3 2 1 Y. Jiang et al., J. Opt. 16, 942 (214) 2.3-mm-long device 1 2 3 4 5 6 Frequency (THz) 1 8 6 4 2

QCL on SI InP THz power lost in the substrate C 2 t 3% W out / W tot.1 =5 cm -1 =1 cm -1 =2 cm -1 xcos c W t I e dx out L =4 cm -1.1 1 2 3 4 5 6 Cavity length (mm)

Cherenkov DFG-QCL on Si substrate 3.7 3.65 Si InP 1 Cherenkov angle: θ C = cos -1 (n g /n sub ) Refractive index 3.6 3.55 3.5 3.45 Absorption (cm -1 ) 1 1.1 θ C_InP ~2 t 3% 3.4 3.35 3.3 1 2 3 4 n g Frequency (THz).1 1E-3 1 2 3 4 Frequency (THz) Advantages of Si over InP substrate High THz transmission Long THz extraction length Facet polishing free THz out-coupling No beam steering for THz tuning P Si / THz PInP THz 18 16 14 12 1 InP =2 cm -1 InP =1 cm -1 8 6 4 2 InP =5 cm -1 1 2 3 4 5 6 Cavity length (mm) θ C_Si ~8 t 45%

Device dimension 2.1mm 2.1mm InP θ P Si S. Jung et al., Optica 4, 38-43 (217) Param. InP device Si device Width(μm) 22 22 Length(mm) 4.2 4.2 T sub (μm) 66 1 θ P ( ) 3 15 T SU8 (nm) n/a 1 9 % transmission

Mid-IR and THz spectra Bias: 15 khz, 4 ns Heat sink temp.: 2 C 116 cm -1 3.5 THz S. Jung et al., Optica 4, 38-43 (217)

Mid-IR power Bias: 15 khz, 4 ns Heat sink temp.: 2 C MIR peak power (W) 2. 1.5 1..5 2 4 6 8 1 12 14 InP device long short Current density (ka/cm 2 ) 4 35 3 25 2 15 1 5 2. 1.5 1..5 2 4 6 8 1 12 14 Si device 4 35 3 25 2 15 1 5 Voltage (V).. 2 4 6 8 1 12 14 2 4 6 8 1 12 14 Current (A) S. Jung et al., Optica 4, 38-43 (217)

Bias: 15 khz, 4 ns Heat sink temp.: 2 C THz power and conversion efficiency THz peak power ( W) 3 25 2 15 1 5 Current density (ka/cm 2 ) 2 4 6 8 1 12 14 closed-si device open-inp device. 2 4 6 8 1 12 14 Current (A) Device η slope-thz (µw/a) THz Power (µw) η conv (mw/w 2 ) InP 1 6.9 35.2.13 InP 2 7.8 26.5.5 Si 1 54.3 123.3.79 Si 2 44.4 113.8.37 Si 3 47.1 146.9.58 S. Jung et al., Optica 4, 38-43 (217) 2. 1.5 1..5 conv (mw/w 2 ) η conv = W THz W 1 W 2

Beam-steering free EC-DFG-QCL on Si

DFG-QCLs with grating outcouplers P THz ~ χ (2) E 1 E 2 e i(β 1 -β 2 )z THz L abs ~1 μm x z Doped InP substrate

Choice of grating outcoupler Outcoupler gratings in THz QCLs provide both outcoupling and feedback In DFG-QCLs, the outcoupler grating only provides outcoupling the phase of the THz wave w.r.t. grating position is difficult to control Implementation of the second-order grating for DFG-QCLs is challenging outcoupling of the THz wave in forward direction was implemented 1. k gr = k DFG - k air 2. k gr = k DFG + k air

Laser heterostructure design is based on K. Fujita et al. Opt. Expr. 24, 16357 (216). Grating optimization at 1.9 THz Electric field distribution @ 1.9THz 24 o (2) Direction of P THz Power distribution 67 % higher power output vs Cherenkov THz DFG-QCLs Λ = 36.95 μm (24 o beam angle) d.c. = 7%

Fabricated devices Facet view Top view High quality metal-metal bonding Grating period : 36.9 μm, duty cycle 7% 28- m-wide ridge, 1.5-mm-long waveguide

Y. Jiang et al. Sci. Rep. 6, 21169 (216) Testing

Device performance 889.6 cm -1 953. cm -1 5kHz, 2ns pulsed @ RT 63.4 cm -1 (1.9 THz) 24 32 k gr = k DFG + k air cos(θ) 15 μw/w 2 @ 112.5 μw J.-H. Kim, under review (218)

Summary Room-temperature alternative to criogenic THz QCLs mw-level power output at room-temperature Broad tunability in 1-6 THz range Narrow emission linewidth in CW operation Significant design space for further improvement Funding