A mathematical introduction to coarse-grained stochastic dynamics

Similar documents
Approches mathématiques pour la simulation multi-échelle des matériaux

Two recent works on molecular systems out of equilibrium

APMA 2811T. By Zhen Li. Today s topic: Lecture 2: Theoretical foundation and parameterization. Sep. 15, 2016

Numerical methods for computational statistical physics

Effective dynamics for the (overdamped) Langevin equation

Hydrodynamics, Thermodynamics, and Mathematics

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

2 Dissipative particle dynamics with energy conservation: Heat conduction that is dissipated due to the velocity dependent forces is transformed into

Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning

BROWNIAN DYNAMICS SIMULATIONS WITH HYDRODYNAMICS. Abstract

Efficient numerical integrators for stochastic models

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

From Molecular Dynamics to hydrodynamics a novel Galilean invariant thermostat

Speeding up Convergence to Equilibrium for Diffusion Processes

Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Computing ergodic limits for SDEs

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Numerical methods in molecular dynamics and multiscale problems

Caltech Ph106 Fall 2001

A path integral approach to the Langevin equation

CHAPTER V. Brownian motion. V.1 Langevin dynamics

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Non-equilibrium phenomena and fluctuation relations

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids

Dissipative nuclear dynamics

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

Collective behavior, from particles to fields

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Stochastic equations for thermodynamics

Protein Dynamics, Allostery and Function

COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS

The Microcanonical Approach. (a) The volume of accessible phase space for a given total energy is proportional to. dq 1 dq 2 dq N dp 1 dp 2 dp N,

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

Estimating Accuracy in Classical Molecular Simulation

Brownian Motion and Langevin Equations

arxiv: v7 [quant-ph] 22 Aug 2017

Stochastic Particle Dynamics for Unresolved Degrees of Freedom. Sebastian Reich in collaborative work with Colin Cotter (Imperial College)

Introduction Statistical Thermodynamics. Monday, January 6, 14

2 Equations of Motion

What is Classical Molecular Dynamics?

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

APMA 2811T. By Zhen Li. Today s topic: Lecture 3: New Methods beyond traditional DPD. Sep. 22, Division of Applied Mathematics, Brown University

Smoothed Dissipative Particle Dynamics Model for Predicting Self-Assembled Nano-Cellulose Fibre Structures

Lecture 12: Detailed balance and Eigenfunction methods

Coarse-graining, applications and mesoscopic molecular dynamics

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

III. Kinetic Theory of Gases

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

G : Statistical Mechanics

Brownian motion and the Central Limit Theorem

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Markovian Approximation and Linear Response Theory for Classical Open Systems

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Particle-Simulation Methods for Fluid Dynamics

Algorithms for Ensemble Control. B Leimkuhler University of Edinburgh

Linear Response Theory, The Green-Kubo formula and Langevin Dynamics

An alternative approach to dissipative particle dynamics

Hydrodynamic Modes of Incoherent Black Holes

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Collective Effects. Equilibrium and Nonequilibrium Physics

Linear Response and Onsager Reciprocal Relations

Comparative Study of the Water Response to External Force at Nanoscale and Mesoscale

arxiv:comp-gas/ v1 28 Apr 1993

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems

An electrokinetic LB based model for ion transport and macromolecular electrophoresis

Mesoscopic simulation for the structural change of a surfactant solution using dissipative particle dynamics

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

VIII.B Equilibrium Dynamics of a Field

Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat

Langevin Dynamics in Constant Pressure Extended Systems

LANGEVIN EQUATION AND THERMODYNAMICS

Aspects of nonautonomous molecular dynamics

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

NPTEL

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Stochastic Particle Methods for Rarefied Gases

From the Newton equation to the wave equation in some simple cases

Langevin Dynamics of a Single Particle

The Boltzmann Equation and Its Applications

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon

2012 NCTS Workshop on Dynamical Systems

Symmetry of the Dielectric Tensor

n v molecules will pass per unit time through the area from left to

A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows

1 Garrod #5.2: Entropy of Substance - Equation of State. 2

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Temperature and Pressure Controls

arxiv: v1 [physics.chem-ph] 11 Feb 2014

Transcription:

A mathematical introduction to coarse-grained stochastic dynamics Gabriel STOLTZ gabriel.stoltz@enpc.fr (CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Paris) Work also supported by ANR Funding ANR-14-CE23-0012 ( COSMOS ) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 1 / 33

Outline Dissipative Particle Dynamics (Isothermal) Dissipative Particle Dynamics with energy conservation Parametrizing DPDE Some numerical results: shock waves in molecular systems Coarse-graining even further: SDPD 1 1 depending on the remaining time... Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 2 / 33

Dissipative Particle Dynamics Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 3 / 33

Stochastic differential equations (1) State of the system X R d, m-dimensional Brownian motion, diffusion matrix σ R d m dx t = b(x t ) dt + σ(x t ) dw t to be thought of as the limit as t 0 of (X n approximation of X n t ) X n+1 = X n + t b (X n ) + t σ(x n )G n, G n N (0, Id m ) Analytical study of the process: law ψ(t, x) of the process at time t distribution of all possible realizations of X t for a given initial distribution ψ(0, x), e.g. δ X 0 and all realizations of the Brownian motion Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 4 / 33

Stochastic differential equations (2) Averages at time t ( ) E ϕ(x t ) = ϕ(x) ψ(t, x) dx R d Generator L = b(x) + 1 2 σσt (x) : 2 = d b i (x) xi + 1 2 i=1 d i,j=1 [ ] σσ T (x) x i xj i,j Evolution of averages at time t ) t (E [ϕ(x t )] [ ] = E (Lϕ) (X t ) Proof: Taylor expansions of E[ϕ(X n+1 )] = E[ϕ(X n )] + t... Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 5 / 33

Stochastic differential equations (3) Rephrase as ϕ(x) t ψ(t, x) dx = R d (Lϕ)(x) ψ(t, x) dx R d Fokker-Planck equation t ψ = L ψ where L is the adjoint of L (integration by parts) ( ) (LA) (x) B(x) dx = A(x) L B (x) dx X Invariant measures are stationary solutions of the Fokker-Planck equation Invariant probability measure ψ (x) dx L ψ = 0, ψ (x) dx = 1, ψ 0 X X Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 6 / 33

Langevin dynamics Positions q = (q 1,..., q N ) D and momenta p = (p 1,..., p N ) R dn Hamiltonian H(q, p) = V (q) + 1 2 pt M 1 p Stochastic perturbation of the Hamiltonian dynamics dq t = M 1 p t dt dp t = V (q t ) dt γm 1 2γ p t dt + β dw t Friction γ > 0 (could be a position-dependent matrix) Existence and uniqueness of the invariant measure (canonical measure) µ(dq dp) = Z 1 e βh(q,p) dq dp Various ergodicity results (including exponential convergence of the law) 2 2 T. Lelièvre and G. Stoltz, Acta Numerica (2016) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 7 / 33

Dissipative Particle Dynamics (1) Langevin dynamics not Galilean invariant, hence not consistent with hydrodynamics friction forces depending on relative velocities 3 Dissipative Particle Dynamics dq t = M 1 p t dt ( dp i,t = qi V (q t ) dt + i j with r ij = q i q j and v ij = p i m i p j m j γχ 2 (r ij,t )v ij,t dt + Antisymmetric stochastic forcing: W ij = W ji Cut-off function χ for the interaction, e.g. χ(r) = ) 2γ β χ(r ij,t) dw ij ( 1 r ) 1 r rcut r cut 3 P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. (1992) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 8 / 33

Dissipative Particle Dynamics (2) Can be generalized to anisotropic frictions, e.g. only along e ij = r ij r ij Generator L = L ham + γ L FD,ij with 1 i<j N L FD,ij = χ 2 (r ij ) ( v ij ( pi pj ) + 1β ) ( p1 p2 ) 2 Thermodynamic consistency 4 Invariant measure µ DPD (dq dp) = Z 1 e βh(q,p) δ { N i=1 p i P 0} (dp) dq Ergodicity is an issue proved for d = 1 only 5 4 P. Espanol and P. Warren, Europhys. Lett. (1995) 5 T. Shardlow and Y. Yan, Stoch. Dynam. (2006) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 9 / 33

Dissipative Particle Dynamics: numerical schemes Many schemes, often dubious extensions of Verlet-like/BBK schemes More appropriate alternatives: splitting schemes 67 My favorite one: Verlet step to update (q, p) For each pair of particles, analytically integrate the elementary fluctuation/dissipation dynamics L FD,ij ( 1 dv ij = γ + 1 ) ( χ 2 2γ 1 (r ij,t )v ij,t dt+ + 1 ) χ(r ij,t ) dw ij m i m j β m i m j 6 T. Shardlow, SIAM J. Sci. Comput. (2003) 7 B. Leimkuhler and X. Shang, J. Comput. Phys. (2015) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 10 / 33

Dissipative Particle Dynamics with energy preservation Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 11 / 33

Construction of the dynamics: a simplified case (1) Enforcing energy conservation in the Langevin dynamics? Gather energy variation in some additional variable ε R + ( ) ( ) dε t = d H(q t, p t ) = γ p2 t m σ2 dt σ p t 2m m dw t The variable ε can be interpreted as some coarse-grained internal energy entropy s(ε) dq t = p t m dt dp t = V (q t ) dt γ p t m dt + dε t = ( γ p2 t m σ2 2m Generator L ham + L FD with L FD = γ 2γ β dw t, ) dt σ p t m dw t. p m A + σ2 2 A2 and A = p p m ε Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 12 / 33

Construction of the dynamics: a simplified case (2) Invariance of measures of the form (mind the factor e s(ε)...) ( ) ρ(dq dp dε) = f H(q, p) + ε e s(ε) dq dp dε Sufficient condition L FD ρ = 0, i.e. γ p ( ) σ 2 m ρ + A 2 ρ = 0 Possible choice: γ = γ(ε) and σ R Fluctuation/dissipation relation T (ε) = 1 s (ε) σ 2 = 2γ s (ε) interpreted as some internal temperature Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 13 / 33

DPDE for many-particle systems (1) Coarse-graining interpretation: a (fragment of a) molecule is replaced by a mesoparticle (q i, p i ) describes the center of mass of the ith mesoparticle missing degrees of freedom described by an internal energy ε i Evolution at constant total energy H(q, p, ε) = V (q) + N i=1 p 2 i 2m i + Microscopic state law: entropies s i = s i (ε i ), internal temperature defined from the entropy as T i (ε i ) = 1 s i (ε i) Simplest case: harmonic internal degrees of freedom, T (ε) = ε/c v J. Bonet Avalos and A. Mackie, Europhys. Lett. 40, 141-146 (1997) P. Español, Europhys. Lett. 40 631-636 (1997) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 14 / 33 N i=1 ε i

DPDE for many-particle systems (2) dq i = p i dt m i dp i = qi V (q)dt + γ ij χ 2 (r ij )v ij dt + σ ij χ(r ij ) dw ij, i j dε i = 1 2 ( χ 2 (r ij ) j i Invariant measures γ ij v 2 ij σ2 ij 2 ( ) ρ(dq dp dε) = f H(q, p, ε) g Fluctuation-dissipation relation ( 1 m i + 1 m j ) ) dt σ ij χ(r ij)v ij dw ij. ( N ) ( N ) p i exp s i (ε i ) dq dp dε, i=1 σ ij = σ, γ ij = σ2 β ij (ε i, ε j ), β ij (ε i, ε j ) = 1 2 2k B i=1 ( 1 T i (ε i ) + 1 ) T j (ε j ) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 15 / 33

Thermodynamic properties In favorable situations (...) the dynamics should be ergodic with respect to the measure ρ E0,P 0 = Z 1 E 0,P 0 δ {H(q,p,ε) E0 }δ { N i=1 p i P 0} exp ( N ) s i (ε i ) When P 0 = 0, this measure is equivalent in the thermodynamic limit to the canonical measure N ρ β (dq dp dε) = Z 1 β e βh(q,p) e βf i (ε i ) dq dp dε where f i (ε i ) = ε i s i(ε i ) β Estimators of the temperature T kin (p) = 1 dnk B i=1 i=1 is a free energy and β is such that E ρβ (H) = E 0 N i=1 p 2 i m i, T int (ε) = ( 1 N N i=1 ) 1 1 T i (ε i ) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 16 / 33

Adding thermal conduction Additional elementary pairwise fluctuation/dissipation dynamics ( 1 dε i = κχ 2 (r ij ) T i (ε i ) 1 ) dt + 2κχ(r ij ) d T j (ε j ) W ij, dε j = dε i, where κ > 0 is a thermal conductivity This dynamis preserves the elementary energy ε i + ε j by construction measures of the form f (ε i + ε j ) e s i (ε i )+s j (ε j ) dε i dε j Static thermodynamic properties therefore unchanged Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 17 / 33

Numerical integration of DPDE (1) Splitting strategy: Hamiltonian part and elementary dynamics dp i = γ(ε i, ε j )χ 2 (r ij )v ij dt + σχ(r ij ) dw ij, dp j = dp i, dε i = χ2 (r ij ) 2 dε j = dε i, [ ( γ(ε i, ε j )vij 2 σ2 1 + 1 )] dt σ 2 m i m j 2 χ(r ij)v ij dw ij, In fact, can be reduced to a dynamics on v ij only ( 1 dv ij = γ(ε i, ε j )χ 2 (r ij ) + 1 ) ( 1 v ij dt + σχ(r ij ) + 1 m i m j m i m j ) dw ij since, by the energy conservation (recall p i + p j is constant), ( ) ε i = ε i,0 + 1 p 2 i pi,0 2 + p2 j pj,0 2 = ε i,0 +F (v ij ), ε j = ε j,0 +F (v ij ) 2 2m i 2m j Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 18 / 33

Numerical integration of DPDE (2) Practical integrator: integrate the dynamics on v ij with fixed friction update the internal energies to ensure the energy conservation it is possible to superimpose a Metropolis correction 8 [w.r.t. some locally invariant measure] Pro/cons of this integrator: automatically corrects for negative internal energies (stabilization) parallelization/threadability limited dedicated schemes for that 9 8 G. Stoltz, arxiv preprint 1612.04154 9 A.-A. Homman, J.-B. Maillet, J. Roussel and G. Stoltz, J. Chem. Phys (2016) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 19 / 33

Parametrization of DPDE Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 20 / 33

Summary of the quantities to provide Static properties effective masses for mesoparticles microscopic state law ε = T (ε) 0 C v (θ) dθ effective interaction potential machine learning approaches Dynamical properties fluctuation magnitude σ thermal conductivity κ cut-off functions for the fluctuation/dissipation dynamics Derivation of DPDE? From Hamiltonian dynamics 10 10 P. Español, M. Serrano, I. Pagonabarraga and I. Zúñiga, Soft Matter (2016) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 21 / 33

Estimating some of the quantities Microscopic state law: energy as a function of the temperature ab-initio computations of the rovibrational modes integration using some distribution function (Bose Einstein) invert to obtain the temperature as a function of the energy Fluctuation magnitude: equilibration dynamics 11 initialize internal and external degrees of freedom at different temperatures N ρ βext,βint (dq dp dε) = Z 1 β e βexth(q,p) e β intf i (ε i ) dq dp dε compute the time evolution of internal and external (kinetic) temperatures timescale for return to equilibrium reference all-atom simulation (small system) i=1 11 M. Kroonblawd, T. Sewell and J.-B. Maillet, J. Chem. Phys. (2016) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 22 / 33

Some numerical results Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 23 / 33

Shock waves in an effective material 16000 14000 12000 Temperature (K) 10000 8000 6000 4000 2000 0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 Time (ps) G. Stoltz, Europhys. Lett. (2006) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 24 / 33

Detonation waves in nitromethane (1) Potential of Exp-6 type, fitted to reproduce Hugoniot curves E E 0 1 2 (P + P 0)(V 0 V) = 0 C v taken from thermodynamic tables σ so that equilibration time between internal and external degrees of freedom is of the order of a few ps Modeling of chemical reactions through some progress variables λ i System of length 4.5 µm Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 25 / 33

Detonation waves in nitromethane (2) Particle velocity, temperature, progress variable, pressure J.-B. Maillet, G. Vallverdu, N. Desbiens and G. Stoltz, Europhys. Lett. (2011) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 26 / 33

Coupling with higher scales Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 27 / 33

Coarse-graining even further: SDPD (1) Adding thermal fluctuations to particle discretization of Navier Stokes 12 Size K of particles (masses Km ) Variables: (q, p) position of discretization nodes, entropy S i or energy ε i Conservative part of the dynamics: Hamiltonian dynamics with energy E(q, p, S) = N i=1 ε i ( Si, ρ i (q) ) + p2 i 2m, ρ i(q) = N mw (r ij ) j=1 dq = p m dt, dp = q E(q, p, S) dt, ds = 0. 12 P. Español and M. Revenga, Phys. Rev. E (2003) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 28 / 33

Coarse-graining even further: SDPD (2) Fluctuation/dissipation: energy formulation 13 dp i = γijp θ ijv θ ij dt + σijp θ ij θ db ij, dp j = dp i, [ dε i = 1 2 dε j = dε j, γ θ ijv T ] ij Pijv θ ij (σθ ij )2 m Tr(Pθ ij) dt 1 2 σθ ijv T ij P θ ij db ij, with appropriate choices for γ ij, γ ij, σ ij, σ ij to ensure the invariance of µ(dq dp dε) = g ( E(q, p, ε), ) N N p i i=1 i=1 ( ) exp Si (ε i,q) k B T i (ε i, q) Reduces to Smoothed Particle Hydrodynamics when σ ij = 0 13 G. Faure, J.-B. Maillet and G. Stoltz, Phys. Rev. E (2016) dq dp dε Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 29 / 33

Parametrization of SDPD Free energy F (ρ, T ), computed from NVT simulations. Deduce... ( ) F (ρ, T ) energy E(ρ, T ) = T 2 T T E(ρ, T ) F (ρ, T ) entropy S(ρ, T ) = T pressure P(ρ, T ) = ρ 2 ρ F (ρ, T ) heat capacity C(ρ, T ) = T E(ρ, T ) Fluid viscosities, which appear in γ ij, σ ij Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 30 / 33

SDPD: some numerical results MD NS K = 10 K = 100 K = 500 K = 1,000 K = 5,000 K = 10,000 Density (kg.m 3 ) 1,600 1,400 1,200 20 15 10 5 0 5 10 Distance from the shock front (reduced units) Density (kg.m 3 ) 1,400 1,200 20 15 10 5 0 5 10 Distance from the shock front (nm) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 31 / 33

Conclusion Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 32 / 33

Conclusion and perspectives Coarse-grained models for atomistic simulations Dissipative Particle Dynamics with conserved energy (DPDE) can be used in nonequilibrium situations replace a molecule or some group of atoms by a mesoparticle consistent thermodynamics input: static properties (computed ab-initio) and dynamical parameters Smoothed Dissipative Particle Dynamics (SDPD) hydrodynamics-like (e.g. solvent in bulk-like regime)...... but particle-based: seamless coupling with DPDE can be envisioned? in progress: add chemistry (Gérôme Faure, CEA/DAM) Gabriel Stoltz (ENPC/INRIA) Aberdeen P.G., 14 Feb. 2017 33 / 33