Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Similar documents
Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Aplikace matematiky. Gene Howard Golub Least squares, singular values and matrix approximations. Terms of use:

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Czechoslovak Mathematical Journal

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Czechoslovak Mathematical Journal

Commentationes Mathematicae Universitatis Carolinae

Časopis pro pěstování matematiky

Czechoslovak Mathematical Journal

Mathematica Bohemica

Commentationes Mathematicae Universitatis Carolinae

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Kybernetika. Milan Mareš On fuzzy-quantities with real and integer values. Terms of use:

Časopis pro pěstování matematiky

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Mathematica Bohemica

Acta Universitatis Carolinae. Mathematica et Physica

Czechoslovak Mathematical Journal

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica

Czechoslovak Mathematical Journal

WSGP 23. Lenka Lakomá; Marek Jukl The decomposition of tensor spaces with almost complex structure

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Mathematica Bohemica

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal

TRIANGULAR NORMS WITH CONTINUOUS DIAGONALS

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 22 (1977), No. 5, Persistent URL:

Applications of Mathematics

Časopis pro pěstování matematiky a fysiky

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

Časopis pro pěstování matematiky

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Mathematica Slovaca. Ján Borsík Products of simply continuous and quasicontinuous functions. Terms of use: Persistent URL:

Časopis pro pěstování matematiky a fysiky

Archivum Mathematicum

Acta Mathematica et Informatica Universitatis Ostraviensis

Archivum Mathematicum

Applications of Mathematics

Aktuárské vědy. D. P. Misra More Multiplicity in the Rate of Interest; Poly-party and Poly-creditor Transactions. II

Časopis pro pěstování matematiky a fysiky

Acta Universitatis Carolinae. Mathematica et Physica

Aplikace matematiky. El Said El Shinnawy The Euclidean plane kinematics. Terms of use: Aplikace matematiky, Vol. 24 (1979), No.

Czechoslovak Mathematical Journal

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Linear Differential Transformations of the Second Order

Acta Mathematica Universitatis Ostraviensis

Časopis pro pěstování matematiky

Mathematica Bohemica

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Real Analysis Problems

Časopis pro pěstování matematiky

In N we can do addition, but in order to do subtraction we need to extend N to the integers

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

Exercise Solutions to Functional Analysis

Introduction and Preliminaries

Exam February h

In N we can do addition, but in order to do subtraction we need to extend N to the integers

PANM 17. Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

Kybernetika. Harish C. Taneja; R. K. Tuteja Characterization of a quantitative-qualitative measure of inaccuracy

Kybernetika. Sebastian Fuchs Multivariate copulas: Transformations, symmetry, order and measures of concordance

Commentationes Mathematicae Universitatis Carolinae

Applications of Mathematics

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

REGULARIZATION PARAMETER SELECTION IN DISCRETE ILL POSED PROBLEMS THE USE OF THE U CURVE

THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN A CONVEX POLYHEDRON

Kybernetika. Andrzej Dziech; Andrzej R. Pach Bounds on the throughput of an unslotted ALOHA channel in the case of a heterogeneous users' population

Recognizing single-peaked preferences on aggregated choice data

EQUADIFF 6. Jean-Claude Nédélec Mixed finite element in 3D in H(div) and H(curl) Terms of use:

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

ON THE MODULI OF CONVEXITY

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

INSTITUTE of MATHEMATICS. ACADEMY of SCIENCES of the CZECH REPUBLIC. A universal operator on the Gurariĭ space

Czechoslovak Mathematical Journal

Analysis and Linear Algebra. Lectures 1-3 on the mathematical tools that will be used in C103

Kybernetika. Šarūnas Raudys Intrinsic dimensionality and small sample properties of classifiers

LINEAR INTERVAL INEQUALITIES

On John type ellipsoids

Toposym 2. Miroslav Katětov Convergence structures. Terms of use:

OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY

Lax Solution Part 4. October 27, 2016

Archivum Mathematicum

Dedicated to Prof. Dr.-Ing. Dr. h.c. Wolfgang L. Wendland on the occasion of his 65th birthday

Geometry and topology of continuous best and near best approximations

Transcription:

Aplikace matematiky Jiří Neuberg Some limit properties of the best determined terms method Aplikace matematiky, Vol. 21 (1976), No. 3, 161--167 Persistent URL: http://dml.cz/dmlcz/103635 Terms of use: Institute of Mathematics AS CR, 1976 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SVAZEK 21 (1976) APLIKACE MATEMATIKY ČÍSLO 3 SOME LIMIT PROPERTIES OF THE BEST DETERMINED TERMS METHOD JlRl NEUBERG (Received February 28, 1974) A very effective method for solving Fredholm integral equations of the first kind is so called method of the best determined terms. It was proposed by R. J. Hanson [2] and further ellaborated for a certain type of problems by J. M. Varah [3]. The effectivity of the method in a natural way depends on the criteria for the choice for the approximate solutions. However appropriate criteria are still needed for applicability of the method. In this contribution we propose a general criterion for the choice of approximate solutions, analyse its properties and present some estimates of the errors for the corresponding approximate solutions. Some other criteria for the choice of approximate solutions are presented in [4,] whereina stochastic approach is used. 1. Let us consider the following linear system 0-1) Kf=g, where fe R n, g e R m and K is a fixed m x n matrix with real elements. In practical calculations it is quite standard that right hand side in (l.l) is not known exactly; we are given a vector g + Sg, such that OV ^ A, where A is an a priori given bound and * is a suitable norm in R m.we also assume that the matrix K is non well conditioned, it may be singular if m = n. According to [1, p. 5] there exist unitary matrices U and V and a "diagonal" matrix D = (d jk ) such that K = U T DV, where d jk = 0 if j #= k and d n = o } = 0, j = 1,..., r = min (m, n). With no loss in generality we assume that cr i =... = (7 r. 161

Let us set Vf = u, Ug = q>. Then the System (1.1) can be written as (1.2) Du = <p. First, we study the system (1.2). Let us denote by S M the set of all solutions of this system. Let 9JI be non empty SOI 4-0. It is easy to see that 9JI is closed and convex. This justifies the correctness of the following Definition. A vector u 0 e$ris called normal solution to (1.2) if uo = min (Hull : u e Wl]. Remark. If the norm in R n is uniformly convex, then the normal solution is determined uniquely. This is the case of the euclidean norm. In what follows the norm means the euclidean norm in both spaces R n and R m. An explite form of the normal solution is given by u 0 D + cp, where D + denotes the generalized inverse matrix to D (see [6, p. 1]). Let A > 0 be a fixed positive number and let dg e R m be such that <5# = A. We consider now the system or else Kf = g + dg, (2.1) Du = cp + S(p, where Sep = U dg. Defining and k»ľ=ľ,<>j(<pj 1=1 + *<Pj)&Ц where <p = (<p u..., <p n ), dq> = (5<p u..., d<p ), 162

we let where VI = [ u (k) :k = 1,..., r}, «<*> = «>,...,«< *>). Our aim is to show some limit properties and error estimates for u 0 u (fe)? k = 1,..., r. Since and r ^o = 2>/>A 1=i <*> = x <(<?,. + ^ ) Єj, i=i where e,- = (0,..., 1,..., 0), we easily derive that (3.i) i"o - "<T = i>; w + z «<PJ) 2 - j=l i = fc+l Lemma 1. Let T > 0 and A e (0, T]. s Then uo u (s) 2 = A 2 (cr/) 2 an^ consequently, 1=i lim u (s) = u 0, A->o where s is such that (p s ^ 0, while cp s+1 =... = (p m = 0. Proof. Since U is unitary, we have that \\$(p\\ = <5g = ^. Then (3.1) implies that ih-" ( i 2 = x(<w = ^2i>;) 2-1=i 1=i One, however, meets the situation, where min { uo u (k) \\ : k = 1,..., r} = u u a), with some / essentially smaller than r, as usual. Because of our assumption concerning the sequence Gj the first summand in the right hand side in (3.1) is an nondecreasing function of k and the second one a nonincreasing function of k respectively. Another weakness of the approximations 163

u (s) is that this approximation is unadequate if the admissible error bound is relatively large. Thus, some other way has to be found how to get more suitable approximation to the normal solution. Let O(k) = u 0 u (/c), k = 1,..., r. As we already mentioned, this function assumes its minimal value at certain positive integer /, the determining of it is a difficult problem, because the vectors cp and Sep are unknown in general. To avoiding this difficulty we proceed as follows. We define y as a function of a discrete variable k = 1,..., r + 1 as if k = 1,..., r and y(k) = Du (fc) -(cp + Scp)\ y(r + 1) = Du 0 - (cp + Scp)\\. Lemma 2. The function y is a nonincreasing function for k = V..., r and y(r + 1) = \\Scp\\. Proof. Let 1 <, k ^ r - 1. Then y(k + 1) = \\Du (k+{) - cp - Scp\\ = = \\DD (k+l) (cp + Sep) - (cp + Scp)\\ S where the n x m matrix D (fc) S \\DD (k) (cp + O» - (cp + O» = y(k), = (</<*>) defined as follows: and df t ] = 0 for j + t and j = t > k d (fc ) = t for j = 1,..., k. a The remaining part of the lemma is an immediate consequence of the relation Du 0 = cp. The lemma is completely prooved. Since an upper bound for O> is available ( O> S d) and since the equality y(r + 1) = A cannot be excluded in general, it is quite suitable to choose an index k(a)e{l,..., r} such that y(k(a)) ^ A and such that y(p) ^ A, p + k(a), pe e {V..., r}, implies that p > k(a). Definition. The vector u (k(a)), where k(a) is defined above, is called the solution of the first kind with respect to the system (2.1). An important property of the solution of the first kind is described in the following. Theorem 1. Let u 0 be the normal solution to (1.2) and u (k(a)) first kind to (2.1), then the following limit relation holds: the solution of the lim u (k( - Л)) = u 0. /I-0 + 164

Proof. Obviously, y(k(a)) = Du«<-)) - (p _ 5(p\\ and thus, _u<«-» - _II 0 = (D«<-< _ ~ ^_ --.) _ ( Dwo _ ^ _ ^) <; Further, - ^ + ll<m ^ 2^ Du<*< J» - Du 0 _ (/< *<-» ;j + /(*<_)) g ; where the elements i,-, of the m x m matrix /«_<)) are defined as follows: and It follows that i., = 0 for j 4= f,j\. _= l,... s m> and j = t> k(a), i jv = 1 for j _!,..., (_). (3.2) (J - J ( * (J»)? g Du<*C» - Du_\\ + J^»^ 3A. Let us set k* = lim inf k(a), and k* = li m sup k(a). Let _ e{l,..., r} fulfil the ^->o + _-o + conditions <p s _= 0, and <p 8+t =... _= <p m = Q. Then we have that (3.3) k* = s == k*. To prove (3.3) we assume that the contrary holds. Thus, let k* =j= 5. As first, let k* < 5. The quantity R(S) = inf (k(a) : 0 A < <5} has the property that (I-J (W )cp <3S, the last result being implied by (3.2). Thus, lim (J-J<*<*»W =0. <5-+0 + Since, obviously, lim R(S) = k* and according to our assumption <5-*0 + 0< «p, _ (/-J<**>)<p, we obtain a contradiction. Thus, k* s. Further, it follows that lim Du (s) - <p\\ = lim D[D (s V] - <p\\ = 0 _->o + _->o + because of the solvability of the system. Consequently, k* 5, and finally k* = s. In the same manner, one can show the validity of the relation k* = s. It follows that there exist the limit lim k(a) and /W0 + lim k(a) = 5. _-+o + 165

This implies that lim w<*^» = lim u (s) A-+0+ A~>0 + and according to lemma 1, the validity of the assertion in our Theorem. This completes the proof. We shall derive some error estimates for the solution of the first kind. Theorem 2. For the normal solution u 0 and the solution of the first kind the following relations hold: u (k(a)) u<^»-u 0 p^ma X { <Pj 2 :y = l,... ) m} «) 2 + j = k(a) + l k(a) + ^2ZK) 2 - ;=i Proof. The validity of the relation shown is a consequence of (3.1). This estimate is worth while whenever the data concerning the vector (p are availables. In the opposite case we have to accept the following less satisfactory result. Theorem 3. With the same notation as in Theorem 2 we have (3.4) u 0 -u^» g( (o-t)2(^ + Wy/> + Proof. We easily verify that j = k(a) + l + л(i>;) 2 ) i/2 1=1 «<*<'» - «0 = «<*<-» - >/ Stpjej - u 0 + K^,e, J=I J=I g and thus, (3.4). = I ^+(fl>> + ^)«J + l I<^Al. j = k(a) + l j=l Remark. Since f = V r w, where V is a unitary matrix, similar results as those shown for the systems (1.2) and (2.1), are valid for systems (1.1) and (3.5) Kf=g + Sg as well, it one modifies the definitions of the concept of a normal solution and a solution of the first kind to (1.1) and (3.5). The proposed criterion has already been tested on some examples of certain inverse problems of the Spectroscopic diagnostics of thin plane sources. The results will be published elsewhere, see [5]. 166

References [1] G. E. Forsythe, C. B. Moler: Сomputеr Solution of Linеar Algеbraiс Syѕtеmѕ, Prеntiсе Hall, Englеwood Сlifѕ, Nеw Jеrѕеy 1967. [2] R. J. Hanson: A numеriсal mеthod for ѕolving Frеdholm intеgral еquationѕ of thе firѕt kind uѕing ѕinguîar valuеѕ, SIAM Ј. Numеr. Anal., Vol. 8 (1970), 616 622. [3] J. M. Varah: On thе numеriсal ѕolution of ill-сonditionеd linеar ѕyѕtеmѕ with appliсationѕ to ill-poѕеd problеms, SIAM Ј. Numеr. Anal., Vol. 10 (1973), 257 267. [4] J. Cífka: Thе mеthod of thе bеst dеtеrminеd tеrms, to appеar. [5] J Hekela: Invеrsе pomoсí mеtody nеjlépе urсеnýсh tеrmů, to appеar in Вull. Astr. Inst. ČSAV. [6] T. L. Boullion, P. L. Odell: Gеnеralisеd Invеrѕе Matriсеѕ, Јоhn Wilеy and Sоnѕ, Lоndоn, 1971. Sоuhrn N KТERÉ LIMIТNÍ VLASТNOSТI MEТODY NEЈLÉPE URСENÝСH ТERMŮ ЈIŘÍ NEUВERG Теntо сlánеk ѕе zabývá vlaѕtnоѕtmi jеdnоhо výb rоvéhо krìtеria prо mеtоdu nеjlеpе určеnýсh tеrmů (BDТ). Řеšеní úlоhy Kx = y + e, kdе K jе matiсе m x n m (ѕpatn pоdmín ná), x є R n, y, e є Iv m, přiсеmž є? й A 2, kdе A > 0 jе daná kоn- ѕtanta, jеѕt оbtížnе. Mеtоdоu BDТ ѕtanоvímе pоѕlоupnоѕt vеktоrů x (ì) (mш(m,..., '")) x? z niсhž pak náѕlеdujíсím výb rоvým kritеriеm určímе aprоximaсi nоrmáiníhо řеѕеní ѕоuѕtavy Kx = y. Тatо aprоximaсе x (fc) jеѕt dеfinоvána: (i) Џx^ - (y + e)\\ 2 й Л 2 (ii) Је-Ü \\Kx w - (y + ѕ)f ^ Л 2 pak j ^ k. І= i Authoŕs address: Jiři Neuberg, Matеmatiсkо-fyzikální fakulta КU, Malоѕtranѕké n. 25, 118 00Praha 1. 167