(Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models

Similar documents
SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Yukawa and Gauge-Yukawa Unification

Higgs searches at L3

Positron Fraction from Dark Matter Annihilation in the CMSSM

Constraints on SUSY parameters from present data

Cosmology/DM - I. Konstantin Matchev

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

How high could SUSY go?

Dark Matter motivated SUSY collider signatures

Dark Matter Implications for SUSY

arxiv: v1 [hep-ph] 12 Dec 2008

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

Accurate Neutralino Relic Density. Paolo Gondolo

Beyond the SM: SUSY. Marina Cobal University of Udine

THE STATUS OF NEUTRALINO DARK MATTER

Dark Matter WIMP and SuperWIMP

Cosmology at the LHC

Kaluza-Klein Dark Matter

Methylation-associated PHOX2B gene silencing is a rare event in human neuroblastoma.

Supersymmetry at the ILC

SUPERSYMETRY FOR ASTROPHYSICISTS

SUSY searches at the LHC * and Dark Matter

Dark Matter Experiments and Searches

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

Neutralino Dark Matter as the Source of the WMAP Haze

SUSY dark matter in nonuniversal gaugino mass models

Dark Matter Direct Detection in the NMSSM

COSMOLOGY AT COLLIDERS

Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

Introduction to Supersymmetry

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Dispersion relation results for VCS at JLab

Supersymmetry at the LHC

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

Dark matter in split extended supersymmetry

Easter bracelets for years

LHC Impact on DM searches

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

The beam-gas method for luminosity measurement at LHCb

Supersymmetry at the LHC

Evolution of the cooperation and consequences of a decrease in plant diversity on the root symbiont diversity

Universal Extra Dimensions

Direct Detection Rates of Neutralino WIMP in MSSM

Neutralino Dark Matter and SUSY Spectroscopy. M. E. Peskin June 2004 YITP

A new simple recursive algorithm for finding prime numbers using Rosser s theorem

Probing SUSY Dark Matter at the LHC

Signals from Dark Matter Indirect Detection

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

SUSY Phenomenology & Experimental searches

The Egret Excess, an Example of Combining Tools

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

Minimal SUSY SU(5) GUT in High- scale SUSY

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Is SUSY still alive? Dmitri Kazakov JINR

Prompt Photon Production in p-a Collisions at LHC and the Extraction of Gluon Shadowing

Natural SUSY and the LHC

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Thomas Lugand. To cite this version: HAL Id: tel

SUSY Dark Matter Models

Split SUSY and the LHC

A Statistical Analysis of Supersymmetric. Dark Matter in the MSSM after WMAP

- A Bayesian approach

Trilinear-Augmented Gaugino Mediation

Multiple sensor fault detection in heat exchanger system

Searching for sneutrinos at the bottom of the MSSM spectrum

Beyond the standard model searches at the Tevatron

Supersymmetry Basics. J. Hewett SSI J. Hewett

Case report on the article Water nanoelectrolysis: A simple model, Journal of Applied Physics (2017) 122,

Measuring Dark Matter Properties with High-Energy Colliders

Probing Kaluza-Klein Dark Matter with Neutrino Telescopes

Supersymmetric Origin of Matter (both the bright and the dark)

Where is SUSY? Institut für Experimentelle Kernphysik

Passerelle entre les arts : la sculpture sonore

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

Global SUSY Fits with IceCube

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

Improving the Jet Reconstruction with the Particle Flow Method; an Introduction

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

arxiv: v2 [hep-ph] 26 Sep 2014

Gravitino LSP as Dark Matter in the Constrained MSSM

14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009

Neutralino dark matter in the NMSSM

Lectures on Supersymmetry III

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Higgs Boson and New Particles at the LHC

Dark matter and LHC: complementarities and limitations

Astroparticle Physics and the LC

DARK MATTER MEETS THE SUSY FLAVOR PROBLEM

L institution sportive : rêve et illusion

Astroparticle Physics at Colliders

MICROPHYSICS AND THE DARK UNIVERSE

High tanβ Grid Search

New Physics at the TeV Scale and Beyond Summary

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Lecture 18 - Beyond the Standard Model

W and Z boson production in p p collisions from Run II of the Tevatron Collider

Transcription:

(Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models E. Nezri To cite this version: E. Nezri. (Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models. COSMO-0 International Workshop on Particle Physics and the Early Universe, Sep 00, Chicago, United States. pp.1-15, 00. <inp3-0001538> HAL Id: inp3-0001538 http://hal.inp3.fr/inp3-0001538 Submitted on 0 Feb 003 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

(Neutrino Indirect) Detection of Neutralino Dark Matter in (non-)universals SUSY GUT Models. Emmanuel Nezri Laboratoire de Physique Corpusculaire de Clermont-Ferrand : Theory Centre de Physique des Particules de Marseille : Antares V.Bertin, E.N., J.Orloff, non-universal models, hep-ph/010034 V.Bertin, E.N., J.Orloff, hep-ph/004135 accepted in EPJ C (msugra) see also: and: J.L.Feng, K.T. Matchev, F. Wilczek, PRD63(01)04054 V. Barger, F. Halzen, D. Hooper, C. Kao, PRD65(0)0750 L. Bergström, J. Edsjö, P. Gondolo; PRD58(98)103519 G. Jungman, M. Kamionkowski, K.Griest, Phys. Rep. 67 (96) 1

Contents Detecting cold dark matter (WIMPS) in neutrino telescopes msugra summary non-universality : Scalar sector Gaugino sector Conclusion

DM indirect detection with a neutrino telescope: ingredients A cold dark matter canditate: choose χ, lightest neutralino in Constrained MSSM A relic density: depends on (co-)annihilation processes σ A A cosmic storage ring: to re-start annihilation, need to concentrate n χ ; halo, clumps? too small for ν s! Need big, nearby, heavy body with large capture rate (C) depends on σ el χp. Sun: OK! Earth: small. χ = Majorana fermion: can self-annihilate, limiting the total population N χ : N χ = C C A N χ Annihilation rate: Γ A = 1 C AN χ = C tanh CC A t eq C can be insensitive to σ A among decay products χχ b b, t t, W W, ZZ,... ν +, only ν s can escape the sun and reach a detector. Φ(E ν ) depends on dominant annihilation channel Cerenkov detector watches for ν s converted into µ 3

DM indirect detection with a neutrino telescope: picture 4

Neutralino SM SUSY MSSM - group SU(3) SU() U(1) - Higgs doublets : tan β = v u vd, 5 scalars : h, A, H, H ± - R-parity conservation stable LSP - m p m p Soft breaking terms L soft In the basis ( i B, i W 3, H0 1, H0 ) : M χ = M 1 0 m Z cβsw m Z sβsw 0 M m Z cβcw m Z sβcw m Z cβsw m Z cβcw 0 µ m Z sβsw m Z sβcw µ 0 χ = z 11 b + z1 W 3 + z 13H0 1 + z 14 gaugino fraction : f G = z 11 + z 1 higgsino fraction : f H = z 13 + z 14 H0 5

Parameters at GUT scale. 10 16 GeV: a common gaugino mass m 1/ a common scalar mass m 0 a common trilinear coupling A 0 a common bilinear coupling B 0 Higgs parameter µ 0 + Renormalization group equations and radiative ElectroWeak Symmetry Breaking: 1 m Z = Input parameters : m H m d QEW tan β Hu SB QEW SB µ QEW SB tan β 1 achieved at Q EW SB m t 1 m t m 0, m 1/, A 0, tan β, sgn(µ) Advantages: REWSB, less free parameters, contact with acc. analyses, but also addressing CCB, Landau poles, high energy extrapoll. Thanks to Suspect authors http://www.lpm.univ-montp.fr:708/ kneur/suspect.html (study of the CMSSM with Suspect : hep-ph/0107316, A. Djouadi, M. Drees,J.L. Kneur) msugra/cmssm models Composition of the lightest neutralino : bino χ : for low m 0, RGE drive M 1 QEW SB = M QEW SB = 0.41m 1/ << µ QEW SB mixed bino-higgsino χ : EWSB m Hu Q EW SB µ QEW SB if tan β 5 for m 0 large (> ), increasing m 0 m less negative µ Hu decreases µ M 1 Focus point region hep-ph/9909334 Feng, Matchev, Moroi 6

Experiment sensitivities in the (m 0, m 1/ ) plane A0=0 ; tan( β)=45 ; µ >0 m1/ (GeV) 800 600 400 χ not LSP 0.3 Ω χ h =1 Exp. Excluded ICECUBE ANTARES km m1/ (GeV) 800 600 400 χ not LSP 0.3 Ωh =1 Exp. Excluded ZEPLIN Max EDELWEISS II 00 0.05 no EWSB 00 0.05 no EWSB 500 1500 000 500 3000 m0 (GeV) 500 1500 000 500 3000 m0 (GeV) A 0 = 0 ; tan β = 45 ; µ > 0 Calculation with Suspect + Darksusy package : http://www.lpm.univ-montp.fr:708/ kneur/suspect.html http://www.physto.se/ edsjo/darksusy/ 7

msugra : Direct Detection Experiments vs Neutrino Telescopes scal σχ p : mχ µ flux : mχ msugra with 5 GeV threshold vs neutrino Indirect Dection -4 Bertin, Nezri, Orloff 0 Bertin, Nezri, Orloff 0 MACRO BAKSAN SUPER K 3-5 ANTARES 3 years - ICECUBE log10 σ χscal -p (pb) log10 µ flux from sun (km.yr -1) 4 msugra models vs Direct Detection 0.03 < Ω χ h < < Ωχ h < 0.3 0.3 < Ω χ h < 1 1 0-1 - CDMS EDELWEISS 0.03 < Ωχ h < < Ω χ h < 0.3 0.3 < Ω χ h < 1-6 -7 EDELWEISS II -8 ZEPLIN MAX -9 100 00 300 400-10 500 mχ (GeV) 100 00 300 400 500 mχ (GeV) 8

Non-universal scalar soft terms Sfermions : non-universality in sfermions matrices can lead to light third generation sfermions coannihilations χ τ, χ t can modify the relic density but happend in region out of reach of detectors. Detection imply real quarks mainly on u and d valence and due to their low Yukawa couplings RGE evolutions of the first and second generation squarks depend on gaugino soft masses their masses can not be lowered by changing scalar soft terms to enhance σ scal χ q and σspin χ q through the process χq q χq. Higgses : relax universality m Hi MGUT change life. = (1 + δ i )m 0 modify REWSB relation parameters, m A, µ can 9

non universal Higgs masses effects in the ( m 0, m 1/ ) plane m H =m0 ; m H1 =0.5*m0 ; A0=0 ; tan( β)=45 ; µ >0 m1/ (GeV) 800 600 400 χ not LSP 0.05 Ω χ h =0.3 - - -1 µ flux = 10 km yr - -1 µ flux = 10 km yr Exp. Excluded m1/ (GeV) 800 600 400 χ not LSP Ω χ h =0.3 0.05 ZEPLIN Max EDELWEISS II Exp. Excluded 00 no EWSB 00 no EWSB 500 1500 000 500 3000 m0 (GeV) 500 1500 000 500 3000 m0 (GeV) m H = m 0 ; m H1 = 0.5m 0 ; A 0 = 0 ; tan β = 45 ; µ > 0 wider norewsb region m A(H) < m A(H) msugra good for relic density (χχ A b b) and direct detection at low m 0 (χq H χq) but lower indirect detection Barger et al PRD65 00, due to the low Isajet value of µ at high m 0 (Allanach, Kraml, Porod, SUSY 0, hep-ph/007314) which increases the higgsino fraction (?). 10

Free relations in gaugino mass parameters M GUT parameter essentially modify neutralino composition (and slightly low energy values of fields whitout SU(3) charge through RGE). Increasing the wino component of the χ + 1, χ0 neutralino favours χχ W + W, ZZ and enhance the annihilation cross section σ A χ χ. the strong χχ0 and χχ + 1 coannihilations become actives and Ω χ h strongly decreases. larger coupling entering in σ scal χ p increases the direct detection favours neutralino annihilations into the hard W + W spectrum increases the indirect detection muon fluxes However, the relevant value of M is very critical : = fine-tunning (except moduli decays giving wino in AMSB models. Moroi, Randall hep-ph/990657). M 3 GUT parameter 1-loop RGE analyse M 3 GUT is the main parameter for non-universality in the MSSM (Kazakov, Moultaka hep-ph/99171). (M scal soft low) = (M scal soft GUT ) + c 3 f 3 + c f + c 1 f 1 + corrections with f i = (MGUT i ) ( b i 1 1 (1+b i α 0 t) ) and c 3 strongly dominant. M 3 GUT < m 1/ decreases m A, m H, µ (and m q ) increase annihilation χχ A b b (χχ f f f) χχ Z t t, χχ χ+ i,χ i W + W, ZZ higgsino fraction very favourable for Ω χ h Gain for detection : direct detection : increase σ scal χ p via χq H χq (m H lower and z 11() z 13(4) ) indirect detection : increase capture σ spin via χ p χq Z χq (higgsino fraction ) and annihilation χχ W + W, ZZ, t t with energetic neutrinos 11

Effects of x = M 3() GUT m 1/ on relic density and detection rate Ω χ h µ flux σ scal msugra m0=1500 ; m1/=600 ; A0=0 ; tan( β)=45 ; µ >0 χ p log10 Ω h^ 1 0.5 0 0.5 1 1.5 M3 m1/ M m1/ ) 1.yr log10 µ flux from sun (km 4 3 1 0 1 M3 m1/ M m1/ log10 σ χ scal p (pb) 4 5 6 7 8 9 M3 m1/ M m1/ 0 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x 0 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x 10 0 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x 700 1 100 600 M m1/ 0.9 0.8 M m1/ 1150 M m1/ µ QEWSB (GeV) 500 400 300 M3 m1/ gaugino fraction 0.7 0.6 0.5 0.4 0.3 M3 m1/ ma (GeV) 1100 1050 M3 m1/ 00 0. 100 0 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x 0 0 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x 950 0 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x µ f G m A 1

M 3 GUT effect on experiment sensitivities in the (m 0, m 1/ ) plane m1/ (GeV) 3000 500 000 1500 500 ANTARES km ICECUBE χ not LSP Exp. Excluded 0.05 Ω χ h =1 0.3 A0=0 ; tan( β)=45 ; µ >0 ; M 3/m 1/ = 0.63 0.3 no EWSB m1/ (GeV) 3000 500 000 1500 500 EDELWEISS II ZEPLIN Max χ not LSP Exp. Excluded 0.05 Ω χ h =1 0.3 0.3 no EWSB 500 1500 000 500 3000 m0 (GeV) 500 1500 000 500 3000 m0 (GeV) M 3 GUT m 1/ = 0.63 ; tan β = 45 13

M 3 GUT effect on experiment sensitivities in the (m 0, m 1/ ) plane A0=0 ; tan( β)=10 ; µ >0 ; M 3/m 1/ = 0.55 3000 500 Exp. Excluded ANTARES km ICECUBE 0.3 3000 500 Exp. Excluded EDELWEISS II ZEPLIN Max 0.3 m1/ (GeV) 000 1500 χ not LSP Ω χ h =1 0.05 m1/ (GeV) 000 1500 χ not LSP Ω χ h =1 0.05 500 no EWSB 500 no EWSB 500 1500 000 500 3000 m0 (GeV) 500 1500 000 500 3000 m0 (GeV) M 3 GUT m 1/ = 0.55 ; tan β = 10 14

Conclusion RGE models OK with neutrino indirect detection : very heavy scalars (beyond reach of LHC) neutrino telescope signal in msugra m χ + < 300 350 GeV Ωh 5 can be accomodated for all msugra points using x = M 3 GUT /m 1/ 0.6(±) + corrections(m 0, tan β, m b ) with a strong enhancement of detection rates improving the experiment possibilities. Earth out of reach neutrino telescopes in those framework. These models are compatible with the Standard Model value of (g ) µ : a SUSY µ 0. 15