The hazy band of the Milky Way is our wheel-shaped galaxy seen from within, but its size

Similar documents
Star systems like our Milky Way. Galaxies

Chapter 17. Active Galaxies and Supermassive Black Holes

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

M31 - Andromeda Galaxy M110 M32

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

2. Can observe radio waves from the nucleus see a strong radio source there Sagittarius A* or Sgr A*.

Question 1. Question 2. Correct. Chapter 16 Homework. Part A

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification

Chapter 14 The Milky Way Galaxy

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Chapter 15 Galaxies and the Foundation of Modern Cosmology

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Galaxies. With a touch of cosmology

The Milky Way Galaxy

Chapter 15 The Milky Way Galaxy

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

Galaxies Guiding Questions

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!!

Chapter 15 The Milky Way Galaxy. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Astro 1050 Fri. Apr. 14, 2017

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

Active Galaxies and Galactic Structure Lecture 22 April 18th

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Stars & Galaxies. Chapter 27 Modern Earth Science

Our View of the Milky Way. 23. The Milky Way Galaxy

The Galaxy. (The Milky Way Galaxy)

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Galaxies. CESAR s Booklet

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

The Milky Way & Galaxies

Physics HW Set 3 Spring 2015

BROCK UNIVERSITY. Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359

24.1 Hubble s Galaxy Classification

The Milky Way Galaxy (ch. 23)

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Part two of a year-long introduction to astrophysics:

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Ay162, Spring 2006 Week 8 p. 1 of 15

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

A100H Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Name Date Period. 10. convection zone 11. radiation zone 12. core

Distance Measuring Techniques and The Milky Way Galaxy

The Milky Way Galaxy and Interstellar Medium

Exam 4 Review EXAM COVERS LECTURES 22-29

Active Galaxies and Quasars

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Beyond Our Solar System Chapter 24

The Milky Way Galaxy Guiding Questions

The Milky Way Galaxy

Galaxy Classification

Chapter 21 Galaxy Evolution. Agenda

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

The Cosmological Redshift. Cepheid Variables. Hubble s Diagram

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

Ch. 25 In-Class Notes: Beyond Our Solar System

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

A 103 Notes, Week 14, Kaufmann-Comins Chapter 15

It is about 100,000 ly across, 2,000 ly thick, and our solar system is located 26,000 ly away from the center of the galaxy.

Galaxies: The Nature of Galaxies

The King's University College Astronomy 201 Mid-Term Exam Solutions

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Black Holes and Curved Space-time. Paths of Light and Matter. The Principle of Equivalence. Implications of Gravity Bending Light

The Discovery of Other Galaxies. 24. Normal Galaxies

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

Chapter 20 Lecture. The Cosmic Perspective Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

Prentice Hall EARTH SCIENCE

Chapter 25: Galaxy Clusters and the Structure of the Universe

Galaxies & Introduction to Cosmology

4/18/17. Our Schedule. Revisit Quasar 3C273. Dark Matter in the Universe. ASTR 1040: Stars & Galaxies


Survey of Astrophysics A110

Quasars and Active Galactic Nuclei (AGN)

The Neighbors Looking outward from the Sun s location in the Milky Way, we can see a variety of other galaxies:

Exam 3 Astronomy 114

The Universe. is space and everything in it.

The Classification of Galaxies

Lecture 9. Quasars, Active Galaxies and AGN

Stars, Galaxies & the Universe Lecture Outline

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

Transcription:

C H A P T E R 15 THE MILKY WAY GALAXY 15-1 THE NATURE OF THE MILKY WAY GALAXY How do astronomers know we live in a galaxy? The hazy band of the Milky Way is our wheel-shaped galaxy seen from within, but its size and shape are not obvious. William and Caroline Herschel counted stars at many locations over the sky to show that our star system seemed to be shaped like a grindstone with the sun near the center. Later astronomers studied the distributions of stars, but, because gas and dust in space blocked their view of distant stars, they concluded the star system was only about 10 kiloparsecs in diameter with the sun at the center. In the early 20th century, Harlow Shapley calibrated Cepheid variable stars to find the distance to globular clusters and demonstrated that our galaxy is much larger than what we can see and that the sun is not at the center. Modern observations suggest that our galaxy contains a disk component about 75,000 ly in diameter and that the sun is two-thirds of the way from the center to the visible edge. The nuclear bulge around the center and an extensive halo containing old stars and little gas and dust make up the spherical component. The mas of the galaxy can be found from its rotation curve. Kepler s third lawreveals that the galaxy contains over 100 billion solar masses. If stars orbited in Keplerian motion, more distant stars would orbit more slowly. They do not, and that shows that the halo may contain much more mass than is visible. Because the mass in this galactic corona is not emitting detectable electromagnetic radiation, astronomers call it dark matter. 15-2 THE ORIGIN OF THE MILKY WAY How did our galaxy form and evolve?

The oldest star clusters reveal that the disk of our galaxy is younger than the halo, and the oldest globular clusters appear to be about 13 billion years old. So our galaxy must have formed about 13 billion years ago. Stellar populations are an important clue to the formation of our galaxy. The first stars to form, termed population II stars, were poor in elements heavier than helium elements that astronomers call metals. As generations of stars manufactured metals in a process called nucleosynthesis and spread them back into the interstellar medium, the metal abundance of more recent generations increased. Population I stars, including the sun, are richer in metals. Galactic fountains produced by expanding supernova remnants may help spread metals throughout the disk. Because the halo is made up of population II stars and the disk is made up of population I stars, astronomers conclude that the halo formed first and the disk later. A theory that the galaxy formed from a single, roughly spherical cloud of gas and gradually flatted into a disk has been amended to include mergers with other galaxies and infalling gas contributing to the disk. 15-3 SPIRAL ARMS What are the spiral arms? You can trace the spiral arms through the sun s neighborhood by using spiral tracers such as O and B stars; but, to extend the map over the 15-1 The Nature of the Milky Way entire galaxy, astronomers must use radio telescopes to see through the gas and dust. The most masive stars live such short lives they don t have time to move from their place of birth. Because they are found scattered along the spiral arms, astronomers conclude that the spiral arms are sites of star formation. The spiral density wave theory suggests that the spiral arms are regions of compression that move around the disk. When an orbiting gas cloud overtakes the compression wave, the gas cloud is compressed and forms stars. A density wave produces a two-armed spiral galaxy.

Another process, self-sustaining star formation, may act to modify the arms with branches and spurs as the birth of massive stars triggers the formation of more stars by compressing neighboring gas clouds. This may account for the wooly appearance of flocculent galaxies. 15-4 THE NUCLEUS What lies at the very center? The nucleus of the galaxy is invisible at visual wavelengths, but radio, infrared, and X-ray radiation can penetrate the gas and dust. These wavelengths reveal crowded central stars and warmed dust. The very center of the Milky Way Galaxy is marked by a radio source, Sagittarius A*. The core must be less than an astronomical unit in diameter, but the motions of stars around the center show that it must contain roughly 2.6 million solar masses. A supermassive black hole is the only object that could contain so much mass in such a small space.

C H A P T E R 16 GALAXIES 16-1 THE FAMILY OF GALAXIES What do galaxies look like? Through 19th-century telescopes, galaxies looked like hazy spiral nebulae. Some astronomers said they were other star systems sometimes called island universes, but others said they were clouds of gas inside the Milky Way system. The controversy culminated in the Shapley-Curtis Debate in 1920. A few years later, with the construction of larger telescopes, astronomers could identify stars, including Cepheid variable stars, in the spiral nebulae. That showed that the spiral nebulae were galaxies. Astronomers divide galaxies into three classes elliptical, spiral, and irregular with subclases specifying the galaxy s shape. Elliptical galaxies contain little gas and dust and cannot make new stars. Consequently, they lack hot, blue stars and have a reddish tint. Spiral galaxies contain more gas and dust in their disks and support active star formation, especially along the spiral arms. Some of the newborn stars are massive, hot, and blue, and that gives the spiral arms a blue tint. About two-thirds of spirals are barred spiral galaxies. The halo and nuclear bulge of a spiral galaxy usually lack gas and dust and contain little star formation. The halos and nuclear bulges have a reddish tint because they lack hot, blue stars. Irregular galaxies have no obvious shape but contain gas and dust and support star formation. 16-2 MEASURING THE PROPERTIES OF GALAXIES How do astronomers find the distances to galaxies? Galaxies are so distant astronomers measure their distances in megaparsecs millions of parsecs.

Astronomers find the distance to galaxies using distance indicators, sometimes called standard candles, objects of known luminosity. The most accurate distance indicators are the Cepheid variable stars. Globular clusters and type Ia supernovae explosions have also been calibrated as distance indicators. By calibrating additional distance indicators using galaxies of known distance, astronomers have built a distance scale. The Cepheid variable stars are the most dependable. When astronomers look at a distant galaxy, they see it as it was when it emitted the light now reaching Earth. The look-back time to distant galaxies can be a significant fraction of the age of the universe. According to the Hubble law, the apparent velocity of recession of a galaxy equals its distance times the Hubble constant. Astronomers can estimate the distance to a galaxy by observing its redshift, calculating its apparent velocity of recession, and then dividing by the Hubble constant. How do galaxies differ in size, luminosity, and mass? Once the distance to a galaxy is known, its diameter can be found from the small-angle formula and its luminosity from the magnitude-distance relation. Astronomers measure the masses of galaxies in two basic ways. The rotation curve of a galaxy show the orbital motion of its stars, and astronomers can use the rotation curve method to find the galaxy s mas. The cluster method uses the velocities of the galaxies in a cluster to find the total mass of the cluster. The velocity dispersion method uses the velocities of the stars in a galaxy to find the total mass of the galaxy. Galaxies come in a wide range of sizes and masses. Some dwarf ellipticals and dwarf irregular galaxies are only a few percent the size and luminosity of our galaxy, but some giant elliptical galaxies are five times larger than the Milky Way Galaxy.

Do other galaxies contain supermassive black holes and dark matter, as does our own galaxy? Stars near the centers of galaxies are following small orbits at high velocities, which suggests the presence of supermassive black holes in the centers of most galaxies. The mas of a galaxy s supermasive black hole is proportional to the mas of its nuclear bulge. That shows that the supermassive black holes must have formed when the galaxy formed. Observations of individual galaxies show that galaxies contain 10 to 100 times more dark matter than visible matter. The hot gas held inside some clusters of galaxies and the gravitational lensing caused by the mass of galaxy clusters reveal that the clusters must be much more massive than can be accounted for by the visible matter further evidence of dark matter. 16-3 THE EVOLUTION OF GALAXIES Why are there different kinds of galaxies? Rich clusters of galaxies contain thousands of galaxies with fewer spirals and more ellipticals. Poor clusters of galaxies contain few galaxies with a larger proportion of spirals. This is evidence that galaxies evolve by collisions and mergers. When galaxies collide, tides twist and distort their shapes and can produce tidal tails. Large galaxies can absorb smaller galaxies in what is called galactic cannibalism. You can see clear evidence that our own Milky Way Galaxy is devouring some of the small galaxies that orbit nearby and that our galaxy has consumed other small galaxies in the past. Shells of stars, counterrotating parts of galaxies, streams of stars in the halos of galaxies, and multiple nuclei are evidence that galaxies can merge. Ring galaxies are produced by high-speed collisions in which a small galaxy plunges through a larger galaxy perpendicular to its disk.

The compression of gas clouds can trigger bursts of star formation, producing starburst galaxies. The rapid star formation can produce lots of dust, which is warmed by the stars to emit infrared radiation, making the galaxy an ultraluminous infrared galaxy. The merger of two larger galaxies can scramble star orbits and drive bursts of star formation to use up gas and dust. Most larger ellipticals have evidently been produced by past mergers. Spiral galaxies have thin, delicate disks and appear not to have suffered mergers with large galaxies. A galaxy moving through the gas in a cluster of galaxies can be stripped of its own gas and dust and may become an S0 galaxy. Rare isolated galaxies tend to be spirals and lack a bar or a strong two-armed spiral pattern, which suggests that gentle interactions with neighbors are needed to stimulate the formation of bars and spiral arms. At great distance and great look-back times, the largest telescopes reveal that galaxies were smaller, more irregular, and closer together. There were more spirals and fewer ellipticals long ago. At the largest distances, astronomers find small irregular clouds of stars that may be the objects that fell together to begin forming galaxies when the universe was very young.

C H A P T E R 17 GALAXIES WITH ACTIVE NUCLEI 17-1 ACTIVE GALAXIES What evidence shows that some galactic nuclei are active? Radio galaxies were first noticed because they emit energy at radio wavelengths, but later studies showed that they emitted a wide range of wavelengths, so they are now called active galaxies. The activity is in their cores, which are called active galactic nuclei. Some galaxies have peculiar properties. Seyfert galaxies, for example, are spirals with small, highly luminous cores. Spectra of the nuclei of Seyfert galaxies show that they contain highly excited gas moving at very high velocities. Double-lobed radio sources emit radio energy from areas on either side of active galaxies. These lobes appear to be inflated by relativistic jets ejected from the nuclei of the galaxies in what is called the double-exhaust model. Hot spots in radio lobes show where the jets push against the gas of the intergalactic medium and inflate the lobes. Some giant elliptical galaxies have small, energetic cores, with, in some cases, jets of matter rushing outward. What is the energy source of this activity? Orbital motion around the nuclei of active galaxies reveals that the central objects have masses ranging from a few million to a few billion solar masses. These are presumably supermassive black holes. Matter flowing through hot accretion disks into supermassive black holes can release tremendous energy and eject jets in opposite directions. The creation of jets is not well understood, but jets are also observed coming from accretion disks around protostars, around neutron stars, and around stellar mass black holes.

Active galaxies moving through the intergalactic medium leave behind trails of hot gas from their jets. In other cases, the motions of the nucleus can produce twisted jets. Supermassive black holes cannot have been formed by dying stars but must have formed as the nuclear bulges of the galaxies began to form. What triggers the nucleus of a galaxy into activity? Most galaxies appear to contain supermassive black holes at their centers, but they are dormant because large amounts of matter are not flowing inward. Only when a supermassive black hole is fed does it erupt. Interactions between galaxies can throw matter into the center, feed the black hole, and trigger eruptions. This explains why active galaxies are often distorted or have nearby companions. According to the unified model, what an observer sees depends on the tilt of the accretion disk. If you see into the core, you see broad spectral lines and rapid fluctuations. If you see the disk edge on, you see only narrow spectral lines produced by slower moving gas above and below the disk. If the jet from the black hole points directly at Earth, you see a BL Lac object, also known as a blazar. 17-2 QUASARS What are the most distant active galaxies? The quasars appear to be the cores of very distant, highly luminous active galaxies. Einstein s relativistic Doppler formula refers to objects moving through space, so it canot be used to analyze the redshifts of galaxies and quasars because those redshifts are not produced

by the Doppler effect. Nevertheless, astronomers know that quasars are very far away because they have very high redshifts. To be visible at such great distances, quasars must be ultraluminous. Because quasars can change their brightness quickly, you can conclude they must be small only a few times larger than our solar system. Observations of the spectra of hazy objects near quasars and the spectra of quasar fuzz show that quasars are the active cores of very distant galaxies. Gravitational lensing by very distant galaxies can form multiple images of quasars, and that is further evidence that the quasars must be very distant. Superluminal expansion refers to blobs of material that appear to be rushing away from some quasars faster than the speed of light. This is an illusion caused when a relativistic jet points nearly at Earth, so it does not contradict the laws of physics or the modern understanding of quasars. What can active galaxies reveal about the history of the universe? Because quasars lie at great distances, they appear as they were over 10 billion years ago when the universe was young and just forming galaxies. The best images show that the host galaxies of quasars are distorted, and that suggests that they have erupted because they have been involved in mergers or collisions. Such interactions were more common in the distant past before the universe had expanded very much and galaxies were closer together. It is also possible that at least some quasars are erupting while matter falls together to create a supermassive black hole as a galaxy begins to form. That is, some quasars may be caused by the formation of the first galaxies when the universe was young. Quasars are most common with redshifts of about 2, which shows that there was an age when galaxy formation, interaction, and mergers were more common. The so-called dead quasars

today are the dormant black holes at the centers of galaxies where little matter is flowing into the black hole.