Chapter 4 - Fundamentals of spatial processes Lecture notes

Similar documents
Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Spatial processes R packages and software Lecture notes

Summary STK 4150/9150

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Bayesian Regression Linear and Logistic Regression

Chapter 3 - Temporal processes

Basics of Point-Referenced Data Models

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Disease mapping with Gaussian processes

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Hierarchical Modeling for Univariate Spatial Data

Practicum : Spatial Regression

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Bayesian Transformed Gaussian Random Field: A Review

Point-Referenced Data Models

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Statistícal Methods for Spatial Data Analysis

Hierarchical Modelling for Univariate Spatial Data

Bayesian Inference: Concept and Practice

Statistics & Data Sciences: First Year Prelim Exam May 2018

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

A short introduction to INLA and R-INLA

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Introduction to Geostatistics

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

CBMS Lecture 1. Alan E. Gelfand Duke University

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

Introduction to Bayes and non-bayes spatial statistics

Bayesian Linear Regression

Beyond MCMC in fitting complex Bayesian models: The INLA method

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA

One-parameter models

GAUSSIAN PROCESS REGRESSION

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Bayesian linear regression

Exercises for STK4150/ Environmental and spatial statistics

Foundations of Statistical Inference

Bayesian Thinking in Spatial Statistics

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Non-gaussian spatiotemporal modeling

Density Estimation. Seungjin Choi

An Introduction to Bayesian Linear Regression

Spatial modelling using INLA

Gaussian predictive process models for large spatial data sets.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Lecture 2: Priors and Conjugacy

Bayesian Linear Models

g-priors for Linear Regression

MCMC algorithms for fitting Bayesian models

COS513 LECTURE 8 STATISTICAL CONCEPTS

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model

Introduction to Spatial Data and Models

STA 2201/442 Assignment 2

Generalized Linear Models Introduction

STA414/2104 Statistical Methods for Machine Learning II

The Bayesian approach to inverse problems

Overview of Spatial Statistics with Applications to fmri

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Lecture 13 Fundamentals of Bayesian Inference

David Giles Bayesian Econometrics

Introduction to Spatial Data and Models

PMR Learning as Inference

Modeling Real Estate Data using Quantile Regression

Estimating the marginal likelihood with Integrated nested Laplace approximation (INLA)

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

STAT 518 Intro Student Presentation

Modeling and Interpolation of Non-Gaussian Spatial Data: A Comparative Study

Default priors and model parametrization

Covariance function estimation in Gaussian process regression

Integrated Non-Factorized Variational Inference

Conjugate Analysis for the Linear Model

Hierarchical Modelling for Univariate and Multivariate Spatial Data

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Hierarchical Modelling for Univariate Spatial Data

Modelling geoadditive survival data

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Introduction to Probabilistic Machine Learning

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN:

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

The Poisson transform for unnormalised statistical models. Nicolas Chopin (ENSAE) joint work with Simon Barthelmé (CNRS, Gipsa-LAB)

BAYESIAN KRIGING AND BAYESIAN NETWORK DESIGN

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University.

Gaussian Processes 1. Schedule

Using Bayes Factors for Model Selection in High-Energy Astrophysics

1 Mixed effect models and longitudinal data analysis

Analysing geoadditive regression data: a mixed model approach

Big Data in Environmental Research

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Efficient Likelihood-Free Inference

Prediction. Prediction MIT Dr. Kempthorne. Spring MIT Prediction

ML estimation: Random-intercepts logistic model. and z

Lecture 9 STK3100/4100

Geostatistical Modeling for Large Data Sets: Low-rank methods

Simple Linear Regression

Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation

Likelihood-Based Methods

Transcription:

Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013

STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative correlation when competition Typically part of a space-time process Temporal snapshot Temporal aggregation Statistical analysis Incorporate spatial dependence into spatial statistical models Relatively new in statistics, active research field!

STK4150 - Intro 3 Hierarchical (statistical) models Data model Process model In time series setting - state space models

STK4150 - Intro 4 Hierarchical (statistical) models Data model Process model In time series setting - state space models Example Y t =αy t 1 + W t, t = 2, 3,... Z t =βy t + η t, t = 1, 2, 3,... W t ind (0, σ 2 W ) η t ind (0, σ 2 W ) Process model Data model We will do similar type of modelling now, separating the process model and the data model: Z(s i ) = Y (s i ) + ε(s i ), ε(s i ) iid

STK4150 - Intro 5 Prediction Typical aim: Observed Z = (Z(s 1 ),..., Z(s m )) Want to predict Y (s 0 ) Squared error loss function: Optimal E(Y (s 0 ) Z) Empirical methods: E(Y (s 0) Z) E(Y (s 0) Z, ˆθ) Bayesian methods: E(Y (s 0) Z) = θ E(Y (s0) Z, θ)p(θ Z)dθ Require E(Y (s 0 ) Z, θ) Z Y are independent, but dependent marginally Require model for {Y (s)}

Geostatistical models Assume {Y (s)} is a Gaussian process (Y (s 1 ),..., Y (s m )) is multivariate Gaussian for all m and s 1,..., s m Need to specify µ(s) = E(Y (s)) C Y (s, s ) = cov(y (s), Y (s )) Usually assume 2. order stationarity: µ(s) = µ, s C Y (s, s ) = C Y ( s s ), s, s Possible extension: µ(s) = x(s) T β Often: Z(s i ) Y (s i ), σε 2 ind.gau(y (s i ), σε) 2

STK4150 - Intro 7 Prediction (Z(s 1 ),..., Z(s m ), Y (s 0 )) is multivariate Gaussian Can use rules about conditional distributions: ( ) (( ) ( )) X1 µ1 Σ11 Σ MVN, 12 X 2 µ 2 Σ 21 Σ 22 Need E(X 2 X 1 ) =µ 1 + Σ 12 Σ 1 22 (X 2 µ 2 ) var(x 2 X 1 ) =Σ 11 Σ 12 Σ 1 22 Σ 21 Expectations: As for ordinary linear regression Covariances: New!

TK4150 - Intro 8 Variogram and covariance function Dependence can be specified through covariance functions Not always that such exist, but prediction can still be carried out More general concept: Variogram Note: 2γ Y (h) var[y (s + h) Y (s)] =var[y (s + h)] + var[y (s)] 2cov[Y (s + h), Y (s)] =2C Y (0) 2C Y (h) Variogram can exist even if var[y (s)] =! Often assumed in spatial statistics, thereby the use of variograms When 2γ Y (h) = 2γ Y ( h ), we get an isotrophic variogram

Isotropic covariance functions/variograms Matern covariance function C Y (h; θ) = σ1{2 2 θ2 1 Γ(θ 2 )} 1 { h /θ 1 } θ2 K θ2 ( h /θ 1 ) Powered-exponential C Y (h; θ) = σ1 2 exp{ ( h /θ 1 ) θ2 } Exponential C Y (h; θ) = σ1 2 exp{ ( h /θ 1 )} Gaussian C Y (h; θ) = σ1 2 exp{ ( h /θ 1 ) 2 }

TK4150 - Intro 10 Bochner s theorem A covariance function needs to be positive definite Theorem (Bochner, 1955) If C Y (h) dh <, then a valid real-valued covariance function can be written as C Y (h) = cos(ω T h)f Y (ω)dω where f Y (ω) 0 is symmetric about ω = 0. f Y (ω): Spectral density of C Y (h).

Nugget effect and Sill We have C Z (h) =cov[z(s), Z(s + h)] =cov[y (s) + ε(s), Y (s + h) + ε(s + h)] =cov[y (s), Y (s + h)] + cov[ε(s), ε(s + h)] =C Y (h) + σεi 2 (h = 0) Assume Then C Y (0) =σy 2 lim [C Y (0) C Y (h)] =0 h 0 C Z (0) = σy 2 + σε 2 lim [C Z (0) C Z (h)] = σε 2 = c 0 h 0 Possible to include nugget effect also in Y -process. Sill Nugget effect TK4150 - Intro 11

Nugget/sill STK4150 - Intro 12

STK4150 - Intro 13 Estimation of variogram/covariance function 2γ Z (h) var[z(s + h) Z(s)] Const expectation = E[Z(s + h) Z(s)] 2 Can estimate from all pairs having distance h between. Problem: Few/no pairs for all h Simplifications γ Z (h) = γ 0 Z ( h ) Use 2 γ 0 Z (h) = ave{(z(s i) Z(s j )) 2 ; s i s j T (h)} If covariates, use residuals

Boreality data Empirical variogram: Boreality data

STK4150 - Intro 15 Testing for independence If independence: γ 0 Z (h) = σ2 Z Test-statistic F = γ Z (h 1 )/ σ 2 Z, h 1 smallest observed distance Reject H 0 for F 1 large Permutation test: Recalculate F for all permutations of Z If observed F is above 97.5% percentile, reject H 0 Boreality example: P-value = 0.0001

Kriging = Prediction Model Y =Xβ + δ Z =Y + ε Prediction of Y (s 0 ) Linear predictors {L T Z + k} Optimal predictor minimize MSPE(L, k) E[Y (s 0 ) L T Z k] 2 =var[y (s 0 ) L T Z k] + {E[Y (s 0 ) L T Z k]} 2 Note: Do not assume any distributional assumptions

Kriging MSPE(L, k) =var[y (s 0 ) L T Z k] + {E[Y (s 0 ) L T Z k]} 2 =var[y (s 0 ) L T Z k] + {µ Y (s 0 ) L T µ z k]} 2 Second term is zero if k = µ Y (s 0 ) L T µ Z. First term (c(s 0 ) = cov[z, Y (s 0 )]) var[y (s 0 ) L T Z k] =C Y (s 0, s 0 ) 2L T c(s 0 ) + L T C Z L Derivative wrt L T : giving 2c(s 0 ) + 2C Z L = 0 L = C 1 Z c(s 0) Y (s 0 ) =µ Y (s 0 ) + c(s 0 ) T C 1 Z [Z µ Z ] MSPE(L, k ) =C Y (s 0, s 0 ) c(s 0 ) T C 1 Z c(s 0)

Kriging c(s 0 ) =cov[z, Y (s 0 )] =cov[y, Y (s 0 )] =(C Y (s 0, s 1 ),..., C Y (s 0, s m )) =c Y (s 0 ) C Z ={C Z (s i, s j )} { C Y (s i, s i ) + σ 2 C Z (s i, s j ) = ε, C Y (s i, s j ), s i = s j s i s j Y (s 0 ) = µ Y (s 0 ) + c Y (s 0 ) T C 1 Z (Z µ Z )

Gaussian assumptions Assume now Y, Z are MVN ( ) (( Z µz = MVN Y(s 0 ) µ Y (s 0 ) Give ) ( )) CZ c, Y (s 0 ) T c Y (s 0 ) C Y (s 0, s 0 ) Y (s 0 ) Z N(µ Y (s 0 ) + c(s 0 ) T C 1 Z [Z µ Z ], C Y (s 0, s 0 ) c(s 0 ) T C 1 Z c(s 0)) Same as kriging! The book derive this directly without using the formula for conditional distribution

Kriging (cont) Assuming Then and Y (s 0 ) = µ Y (s 0 ) + c Y (s 0 ) T C 1 Z (Z µ Z ) E[Y (s)] =x(s) T β Z(s i ) Y (s i ), σ 2 ε ind.gau(y (s i ), σ 2 ε) µ Z =µ Y = Xβ C Z =Σ Y + σ 2 εi c Y (s 0 ) =(C Y (s 0, s 1 ),..., C Y (s 0, s m )) T Y (s 0 ) = x(s 0 )β + c Y (s 0 ) T [Σ Y + σ 2 εi] 1 (Z Xβ)

STK4150 - Intro 21 Summary previous time/plan Simple kriging Linear predictor Assume parameters known Equal to conditional expectation

STK4150 - Intro 22 Summary previous time/plan Simple kriging Linear predictor Assume parameters known Equal to conditional expectation Unknown parameters Ordinary kriging Plug-in estimates Bayesian approach Non-Gaussian models

STK4150 - Intro 23 Unknown parameters So far assumed parameters known, what if unknown? Plug-in estimate/empirical Bayes Bayesian approach Direct approach - Ordinary kriging

STK4150 - Intro 24 Estimation Likelihood L(θ) = p(z; θ) = p(z y; θ)p(y; θ)dθ Gaussian processes: Can be derived analytically Optimization can still be problematic Many (too many?) routines in R available y

Estimation Likelihood L(θ) = p(z; θ) = p(z y; θ)p(y; θ)dθ Gaussian processes: Can be derived analytically Optimization can still be problematic y Many (too many?) routines in R available > gls(bor~wet,correlation=corgaus(form=~x+y,nugget=true),data=boreality) Generalized least squares fit by REML Model: Bor ~ Wet Data: Boreality Log-restricted-likelihood: -1363.146 Coefficients: (Intercept) Wet 15.06705 77.66940 Correlation Structure: Gaussian spatial correlation Formula: ~x + y Parameter estimate(s): range nugget 460.3941829 0.6112509 Degrees of freedom: 533 total; 531 residual Residual standard error: 3.636527

Bayesian approach Hierarchical model Variable Densities Notation in book Data model: Z p(z Y, θ) [Z Y, θ] Process model: Y p(y θ) [Y θ] Parameter: θ

Bayesian approach Hierarchical model Variable Densities Notation in book Data model: Z p(z Y, θ) [Z Y, θ] Process model: Y p(y θ) [Y θ] Parameter: θ Simultaneous model: p(y, z θ) = p(z y, θ)p(y θ) Marginal model: L(θ) = p(z θ) = y p(z, y θ)dy Inference: θ = argmax θ L(θ)

Bayesian approach Hierarchical model Variable Densities Notation in book Data model: Z p(z Y, θ) [Z Y, θ] Process model: Y p(y θ) [Y θ] Parameter: θ Simultaneous model: p(y, z θ) = p(z y, θ)p(y θ) Marginal model: L(θ) = p(z θ) = p(z, y θ)dy y Inference: θ = argmax θ L(θ) Bayesian approach: Include model on θ Variable Densities Notation in book Data model: Z p(z Y, θ) [Z Y, θ] Process model: Y p(y θ) [Y θ] Parameter model: θ p(θ) [θ] Simultaneous model: p(y, z, θ) Marginal model: p(z) = θ p(z, y θ)dydθ y Inference: θ = θ θp(θ z)dθ

Bayesian approach - example Assume z 1,..., z m are iid, z i = µ + ε i, ε i N(0, σ 2 ) σ 2 known, interest in estimating µ. ML: ˆµ ML = z, Var[ z] = σ 2 /m

Bayesian approach - example Assume z 1,..., z m are iid, z i = µ + ε i, ε i N(0, σ 2 ) σ 2 known, interest in estimating µ. ML: ˆµ ML = z, Var[ z] = σ 2 /m Bayesian approach: Assume µ N(µ 0, kσ 2 ) Can show that E[µ z] = k 1 µ 0 + m z k 1 + m σ2 Var[µ z] = k 1 + m k z k σ 2 m

TK4150 - Intro 31 Prediction - example Predict new point z 0. Plug-in-rule: ẑ 0 = z, var[ẑ 0 ] = σ 2

TK4150 - Intro 32 Prediction - example Predict new point z 0. Plug-in-rule: ẑ 0 = z, var[ẑ 0 ] = σ 2 Bayesian approach: E[z 0 z] =E[E[z 0 µ, z]] = E[µ z] = k 1 µ 0 + m z k 1 + m var[z 0 z] =E[var[z 0 µ, z]] + var[e[z 0 µ, z]] =σ 2 + var[µ z] =σ 2 + σ 2 k 1 + m k k z σ 2 + σ2 m Taking uncertainty in µ into account.

INLA INLA = Integrated nested Laplace approximation (software) C-code, R-interface Can be installed by source("http://www.math.ntnu.no/inla/givemeinla.r") Both empirical Bayes and Bayes

Example - simulated data Assume Y (s) =β 0 + β 1 x(s) + σ δ δ(s), Z(s i ) =Y (s i ) + σ ε ε(s i ), {δ(s)} matern correlation {ε(s i )} independent Simulations: Simulation on 20 30 grid {x(s)} sinus curve in horizontal direction Parametervalues (β 0, β 1 ) = (2, 0.3), σ δ = 1, σ ε = 0.3 and (θ 1, θ 2 ) = (2, 3) Show images Show code/results

STK4150 - Intro 35 Matern model - parametrization Model Range par Smoothness par Book { h /θ 1 } θ2 K θ2 ( h /θ 1 ) θ 1 θ 2 geor { h /φ} κ K κ ( h /φ) φ κ INLA { h κ} ν K ν ( h κ) 1/κ ν Note: INLA reports an estimate of another range, defined as 8 r = κ corresponding to a distance where the covariance function is approximately zero. An estimate of the range parameter can then be obtained by 1 κ = r 8 Note: INLA works with precisions τ y = σy 2, τ z = σz 2.

STK4150 - Intro 36 Output INLA Empirical Bayes Fixed effects: mean sd 0.025quant 0.5quant 0.975quant kld (Intercept) 2.5757115 0.006218343 2.5635180 2.5757114 2.5879077 0 x 0.3714519 0.040367838 0.2922947 0.3714515 0.4506262 0 Random effects: Name Model Max KLD delta Matern2D model Model hyperparameters: mean sd 0.025quant 0.5quant Precision for the Gaussian observations 28.8979 1.5841 25.9174 28.8546 Precision for delta 2.2549 0.1507 1.9738 2.2498 Range for delta 5.9772 0.2936 5.4222 5.9700 0.975quant Precision for the Gaussian observations 32.1247 Precision for delta 2.5644 Range for delta 6.5730 Marginal Likelihood: -455.08 Warning: Interpret the marginal likelihood with care if the prior model is improper. Posterior marginals for linear predictor and fitted values computed

STK4150 - Intro 37 Result - INLA - empirical Bayes Parameter True value Estimate β 1 2.0 2.423 β 2 0.3 0.357 σ z 0.3 1 13.2739 = 0.274 σ y 1.0 1 0.5802 = 1.313 φ 1 2.0 5.977 8 = 2.113

STK4150 - Intro 38 Ordinary kriging E[Y (s)] = µ, µ unknown, obs Z = (Z 1,..., Z m ) MSPE(λ) = E[Y (s 0 ) λ T Z) 2 Constraint: E[λ T Z] = E[Y (s 0 )] = µ E[λ T Z] = λ T E[Z] = λ T 1µ λ T 1 = 1 Lagrange multiplier: Minimize MSPE(λ) 2κ(λ T 1 1) MSPE(λ) = C Y (s 0, s 0 ) 2λ T c Y (s 0 ) + λ T C Z λ Differentiation wrt λ T : 2c Y (s 0 ) + 2C Z λ =2κ1 λ T 1 =1 λ =C 1 Z [c Y (s 0 ) + κ 1] κ = 1 c Y (s 0 ) T C 1 Z 1 1 T C 1 Z 1

Kriging Simple kriging, EY (s) = x(s) T β, known Y (s 0 ) = x(s 0 )β + c Y (s 0 ) T C 1 (Z Xβ) Z

Kriging Simple kriging, EY (s) = x(s) T β, known Y (s 0 ) = x(s 0 )β + c Y (s 0 ) T C 1 (Z Xβ) Ordinary kriging, EY (s) = µ, unknown Z Ŷ (s 0 ) ={c Y (s 0 ) + 1(1 1T C Z 1c y (s 0 )) 1 T C 1 Z 1 } T C 1 Z Z = µ gls + c Y (s 0 ) T C 1 Z (Z 1 µ gls) µ gls =[1 T C 1 Z 1] 1 1 T C 1 z Z

Kriging Simple kriging, EY (s) = x(s) T β, known Y (s 0 ) = x(s 0 )β + c Y (s 0 ) T C 1 (Z Xβ) Ordinary kriging, EY (s) = µ, unknown Z Ŷ (s 0 ) ={c Y (s 0 ) + 1(1 1T C Z 1c y (s 0 )) 1 T C 1 Z 1 } T C 1 Z Z = µ gls + c Y (s 0 ) T C 1 Z (Z 1 µ gls) µ gls =[1 T C 1 Z 1] 1 1 T C 1 z Z Universal kriging, EY (s) = x(s) T β, unknown Ŷ (s 0 ) =x(s 0 ) T βgls + c Y (s 0 ) T C 1 Z (Z X β gls ) β gls =[X T C 1 Z X] 1 X T C 1 z Z

TK4150 - Intro 42 Non-Gaussian data Counts, binary data: Gaussian assumption inappropriate Can still have Gaussian assumption on latent process, but non-gaussian data-distribution Y (s) =x(s) T β + ε(s), {ε(s)} Gaussian process Z(s i ) Y (s i ), θ 1 ind.f(y (s i ), θ 1 ) Best linear predictor still possible, but not reasonable (?) Conditional expectation E[Y (s 0 ) Z] still optimal under square loss Not easy to compute anymore Exponential-family model (EFM) f (z) = exp{(zη b(η))/a(θ 1 ) + c(z, θ 1 )} η =x T β Include Binomial, Poisson, Gaussian, Gamma

STK4150 - Intro 43 Estimation Likelihood L(θ) = p(z; θ) = p(z y; θ)p(y; θ)dθ Gaussian processes: Can be derived analytically Non-Gaussian: Can be problematic Monte Carlo Laplace approximations y

STK4150 - Intro 44 Computation of conditional expectation E[Y (s 0 ) Z] = E[E[Y (s 0 ) Y, Z]] Monte Carlo: E[E[Y (s 0 ) Y, Z]] 1 M M E[Y (s 0 ) Y m, Z] m=1 where Y m [Y Z] (MCMC) Laplace approximation: Approximate [Y Z] by a Gaussian Computer software available for both approahces. Also give uncertainty measures var[y (s 0 ) Z].

STK4150 - Intro 45 Laplace approximation L(θ) =p(z; θ) = p(z y; θ)p(y; θ)dy = exp{f (y; θ)}dy y y where f (y; θ) = log p(z y; θ) + log p(y; θ) Taylor approximation, y 0 max-point of f (y; θ) (depending on θ) f (y) f (y 0 ) 1 2 (y y 0) T H(y y 0 ), H = 2 y y T f (y) y=y 0 L(θ) exp{f (y 0 ) 1 2 (y y 0) T H(y y 0 )}dy y = exp{f (y 0 )}(2π) m/2 H 1/2

Example - simulated data Assume Y (s) =β 0 + β 1 x(s) + σ δ δ(s), Z(s i ) Poisson(exp(Y (s i )) {δ(s)} matern correlation Simulations: Simulation on 20 30 grid {x(s)} sinus curve in horizontal direction Parametervalues (β 0, β 1 ) = (2, 0.3), σ δ = 1, σ ε = 0.3 and (θ 1, θ 2 ) = (2, 3) Show images Show code/results