Časopis pro pěstování matematiky

Similar documents
Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky a fysiky

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Časopis pro pěstování matematiky

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Commentationes Mathematicae Universitatis Carolinae

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Czechoslovak Mathematical Journal

Mathematica Bohemica

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Archivum Mathematicum

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Časopis pro pěstování matematiky a fysiky

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Archivum Mathematicum

Časopis pro pěstování matematiky a fysiky

Commentationes Mathematicae Universitatis Carolinae

Archivum Mathematicum

Archivum Mathematicum

Czechoslovak Mathematical Journal

Commentationes Mathematicae Universitatis Carolinae

Mathematica Bohemica

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

Czechoslovak Mathematical Journal

Časopis pro pěstování matematiky

Linear Differential Transformations of the Second Order

Applications of Mathematics

Acta Universitatis Carolinae. Mathematica et Physica

TRIANGULAR NORMS WITH CONTINUOUS DIAGONALS

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Commentationes Mathematicae Universitatis Carolinae

Mathematica Bohemica

Časopis pro pěstování matematiky

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Commentationes Mathematicae Universitatis Carolinae

Applications of Mathematics

Časopis pro pěstování matematiky

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Acta Mathematica Universitatis Ostraviensis

Kybernetika. Šarūnas Raudys Intrinsic dimensionality and small sample properties of classifiers

Commentationes Mathematicae Universitatis Carolinae

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Czechoslovak Mathematical Journal

On the Periodic Solutions of Certain Fifth Order Nonlinear Vector Differential Equations

Acta Mathematica et Informatica Universitatis Ostraviensis

Course 212: Academic Year Section 1: Metric Spaces

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

EQUADIFF 6. Jean-Claude Nédélec Mixed finite element in 3D in H(div) and H(curl) Terms of use:

Czechoslovak Mathematical Journal

3 Stability and Lyapunov Functions

Mathematica Bohemica

Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation


Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Math 19 Practice Exam 2B, Winter 2011

Oscillation theorems for the Dirac operator with spectral parameter in the boundary condition

Czechoslovak Mathematical Journal

Kybernetika. Sebastian Fuchs Multivariate copulas: Transformations, symmetry, order and measures of concordance

Output Feedback and State Feedback. EL2620 Nonlinear Control. Nonlinear Observers. Nonlinear Controllers. ẋ = f(x,u), y = h(x)

Mathematica Bohemica

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

GLOBAL ATTRACTIVITY IN A NONLINEAR DIFFERENCE EQUATION

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points

Czechoslovak Mathematical Journal

1 The Observability Canonical Form

Aplikace matematiky. Gene Howard Golub Least squares, singular values and matrix approximations. Terms of use:

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

MATH 215/255 Solutions to Additional Practice Problems April dy dt

Mathematica Slovaca. Tibor Žáčik; Ladislav Mišík A simplified formula for calculation of metric dimension of converging sequences

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions.

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Kybernetika. Milan Mareš On fuzzy-quantities with real and integer values. Terms of use:

THE POISSON TRANSFORM^)

Acta Universitatis Carolinae. Mathematica et Physica

The Hilbert Transform and Fine Continuity

Časopis pro pěstování matematiky

Sample Solutions of Assignment 10 for MAT3270B

Aktuárské vědy. D. P. Misra More Multiplicity in the Rate of Interest; Poly-party and Poly-creditor Transactions. II

Disconjugate operators and related differential equations

Acta Universitatis Carolinae. Mathematica et Physica

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

1 Lyapunov theory of stability

Extension of continuous functions in digital spaces with the Khalimsky topology

Commentationes Mathematicae Universitatis Carolinae

Transcription:

Časopis pro pěstování matematiky án Andres On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order Časopis pro pěstování matematiky, Vol. 111 (1986), No. 3, 225--229 Persistent URL: http://dml.cz/dmlcz/108157 Terms of use: Institute of Mathematics AS CR, 1986 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY Vydává Matematický ústav ČSAV, Praha SVAZEK 111 * PRAHA 18. 7. 1986 * ČÍSLO 3 ON STABILITY AND INSTABILITY OF THE ROOTS OF THE OSCILLATORY FUNCTION IN A CERTAIN NONLINEAR DIFFERENTIAL EQUATION OF THE THIRD ORDER AN ANDRES, Olomouc (Received March 7, 1983) Our article deals with the analysis of (in)stability of the roots x of the oscillatory function h(x) in the equation (1) x'" + ax" + g(x) x' + h(x) 0, where a > 0 is a constant, g(x), h(x) e ( 1 ( oo, oo) and the function h(x) has infinite number of isolated zero points x on the interval ( 00, 00). We will apply the well-known Liapunov's second method represented by the following Theorem 0. a) If there exists such a continuous positive definite function that the relation V(X) holds with respect to the system V' : (grad V(X), F(X)) ^ - - 0 dr (0) (0) X' F(X) (F(0) 0) and the set V 0 contains no trajectory except 0, then the trivial solution of the system (0) is asymptotically stable. b) If there exists such a continuous function V(X) which is not negative definite in any neighbourhood of the origin, V > 0 and the set V 0 contains no trajectory except 0, then the trivial solution of the system (0) is unstable. For the proof see e.g. [1, pp. 19 23]. 225

2. Theorem 1. // there exists such an h-neighbourhood of the root x of h(x) in (1) that the conditions 1) h'(x) > 0, 2) a g(x) - h'(x) 8 > 0 (5-const), 3) g'(x) 0 are satisfied for 0 < x x < h, then x is asymptotically stable. Proof. It is obvious that the root x of h(x) in (1) is asymptotically stable if and only if the same is true for the trivial solution of the equation (2) x'" + ax" + g*(x) x' + h*(x) 0, where g*(x) : g(x + x), h*(x) : h(x + x). Let us transform (2) to the equivalent system (2') x' y, y' z, z' h*(x) g*(x) y az. Since it is a well-known fact (see e.g. [2]) that the asymptotic stability of the trivial solution of (2') can be reached under the assumptions 1), 2) and 3'): g*'(x) sgn x ^ 0 holding for the functions g*, h* in an h-neighbourhood of the solution mentioned, we have to prove that the same holds also under a more general assumption than 3'), namely g*'(0) 0. Applying the Liapunov function (cf. [2]) V(x, y, 2) a h*(s) ds + h*(x) y + i[g*(x) y 2 + (ay + z) 2 ], which for x + 0 can be rewritten as where V(x, y, z) W(x) + \ \g*(x) g! ) + yj + (ay + z) 2, W W f h ~7r\ \l h -^f\ g *'^ + a g *^ ~ h *'^] ds o 9*(s) 12 g*(s) ^rh^rihi,) io9*(s)hg*(s) y U we can see that such a number h h t > 0 must exist that the relation lim PlrV'wl W- 5 * 1 i d implied by l)-3) yields *-o Lflf*(x) 1 h*(x),,/ >, s A -_U,. W +.>o. and consequently V{X, y, z) is positive definite. 226

Since the derivative of V(x, y, z) with respect to (2') satisfies -[a g*(x) - h* 9 (x) - ig*'(x) y] y 2 ~4<5y for g*'(x) y. <5 when x. h 2 ^i> y k(h 2, k-suitable constants), and the set V[ V ) 0 contains no trajectory except (0, 0, 0), the trivial solution of (2') (and consequently also the root x of h(x) in (1)) is, according to Theorem 0, a), asymptotically stable. Q.E.D. Let us proceed to the examination of unstable roots. 3. Lemma 1. If there exists such an h-neighbourhood of the origin that the condition 1') h(x) sgn x < 0 is satisfied for 0 < x < h, then the trivial solution of (l) is unstable. ' Proof. Let us transform (1) to the equivalent system (1') x 9 y, y' z, z 9 -h(x) - g(x) y - az. Using the function V(x, y, z) with suitable parameters a, f$\ V(x, y, z) a g(s) s ds + /? h(s) ds ccaxy + (/?a + a) y 2 axz + fiyz, we obtain the following identity: dk( *»* 2 ) a h(x) x - y 2 (aa + / a(x)) + z 2. df (n Thus, denoting K : max g(x) and choosing /? : 1, a :< Kla, we conclude x ft that -^->0 for x ft ((x,j;,z) (0,0,0)). df (r) Since the function V(x, y, z) is evidently idenfinite, the trivial solution of (l) is, according to Theorem 0, b), unstable. Q.E.D. Lemma 2. If there exists such an h-neighbourhood of the origin that the conditions 1) h(x) sgn x > 0, 2') g(x) -8 < 0 ((5-const.) are satisfied for 0 < x < h, then the trivial solution of(i) is unstable. 227

Proof. Employing the same Liapunov function as in the proof of Lemma 1 and choosing the parameters a, p as follows: a : 1, p :, where inf g(x) : K S, K o< x <fi we find that the relation dv d '(l'> > 0 is satisfied for x g h ((x, y, z) (0, 0, 0)). Therefore the same argument as that used in Lemma 1 confirms the above assertion. Lemma 3. If there exists such an h-neighbourhood of the origin that the conditions 0 ft v 'o) (). 2') h'(x) - a g(x) 5 > 0 (<5-const.), 3') g(x) > 0 are satisfied for 0 < x < h, then the trivial solution of(i) is unstable. Proof. It is useful to notice that the assumption 1) 3') imply the existence of such a constant 0 < h x ^ h that the relations (3) -^ -aa(x) -, /z(x)sgnx>0 x 2 hold for 0 < x < h l9 because, by virtue of the L'Hospital rule, (4) lim R^ - a g(x)l fc'(0) - a g{0) 5 x-+0 [_ X is satisfied in view of 1), 2') and the function (h(x)x a g(x)) is assumed to be continuous for 0 < x < h t ; the second relation follows immediately from 3'). If we transform (1) to (V) again and employ the Liapunov function of the form V(x, y, z) a\ g(s) s ds a h(s) ds a 2 xy + axz (1 + a) ay 2 /2 ocyz with a positive parameter a, we come to dvix, y 9 z) ax Щ [h(x) + azf - ŕ\a* - a (x)] - - [«- ^ в 2 Hence, in order to satisfy dv dt(i-) >0 ((x, y, z) ф (0, 0, 0)), 228

the inequalities (5) a 2 >ccg(x), a> ^ h(x) h(x) a 3 v,,, f i.e. - > > a g\x), must be fulfilled. x a However, taking a : a 2 j(g(0) + <5a/4), (5) can be satisfied for 0 < x < h 2 g ^ h i9 where ft 2 1 s a certain suitable constant, as it follows immediately from (3), (4). Since the remaining assumptions of Theorem 0, b) can be easily verified and V(x, y, z) is indefinite, the trivial solution of (1) is again unstable. \ Theorem 2. If there exists such an h-neighbourhood of the root x of h(x) in (1) that at least one of the following conditions is satisfied: 1) h'(x) < 0, 2) h'(x) > 0, g(x) ^ -(5 < 0, 3) h(x) 0/ g(x) > 0, h'(x) - a g(x) S > 0 for 0 < \x 3c < ft, fften ffte roo^ x is unstable. Proof follows immediately from Lemmas 1, 2, 3 by the same arguments as those used in the proof of Theorem 1. Although we have succeeded in obtaining information about unstable roots of h(x), by reversing the conditions 1), 2) of Theorem 1, neither of the two conditions can be said to be a necessary one. References [1] E. A. Barbashin: Liapunov Functions (in Russian). Nauka, Moscow 1970. [2] V. Haas: A stability result for a third order nonlinear differential equation.. London Math. Soc. 40 (1965), 31-33. Authoŕs address: 111 46 Olomouc, Gottwaldova 15 (Laboratoř optiky PU). 229