Majorana Neutrino Oscillations in Vacuum

Similar documents
Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

HIGHER ORDER DIFFERENTIAL EQUATIONS

Equilibrium Composition and Thermodynamic Properties of Hydrogen Plasma

Elliptical motion, gravity, etc

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Quantum trajectories and quantum measurement theory in solid-state mesoscopics

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium

TOPIC 5: INTEGRATION

Chapter 11 Calculation of

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

1.60± ± ±0.07 S 1.60± ± ±0.30 X

A NEW MIXED HEXAHEDRAL FINITE ELEMENT IN HEAT TRANSFER ANALYSIS

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Tangram Fractions Overview: Students will analyze standard and nonstandard

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

Formal Concept Analysis

Floating Point Number System -(1.3)

Floating Point Number System -(1.3)

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Lecture 6 Thermionic Engines

Ch 1.2: Solutions of Some Differential Equations

I. The Connection between Spectroscopy and Quantum Mechanics

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Study Of Superconductivity And Antiferromagnetism In Rare Earth Nickel Borocarbides (RNi 2 B 2 C)

Fractional Topological Insulators A Bosonization Approach

OpenMx Matrices and Operators

Physics 43 HW #9 Chapter 40 Key

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

d e c b a d c b a d e c b a a c a d c c e b

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

C-Curves. An alternative to the use of hyperbolic decline curves S E R A F I M. Prepared by: Serafim Ltd. P. +44 (0)

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

Last time: introduced our first computational model the DFA.

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

The Matrix Exponential

Trigonometric functions

Lecture 4. Conic section

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Lecture 14 (Oct. 30, 2017)

1 General boundary conditions in diffusion

A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism

CS 103 BFS Alorithm. Mark Redekopp

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

The Matrix Exponential

Elements of Statistical Thermodynamics

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Chapter 40 Introduction to Quantum

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

THE SPINOR FIELD THEORY OF THE PHOTON

Instructions for Section 1

Planar Upward Drawings

SCHUR S THEOREM REU SUMMER 2005

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Compton Scattering. There are three related processes. Thomson scattering (classical) Rayleigh scattering (coherent)

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final!

Fundamental Algorithms for System Modeling, Analysis, and Optimization

COMP108 Algorithmic Foundations

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

FINITE ELEMENT ANALYSIS OF CONSOLIDATION PROBLEM IN SEVERAL TYPES OF COHESIVE SOILS USING THE BOUNDING SURFACE MODEL

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

CHEM 333 QUANTUM THEORY AND SPECTROSCOPY PROBLEM SET I SOLUTION KEY

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Integral Calculus What is integral calculus?

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

fiziks Forum for CSIR-UGC JRF/NET, GATE, IIT-JAM, GRE in PHYSICAL SCIENCES

The University of Sydney MATH 2009

The first practical supersonic wind tunnel, built by A. Busemann in Germany in the mid-1930s.

1 Input-Output Stability

Q39.2 An ellipsoid. The dimension in the direction of motion would be measured to be scrunched in.

[ ] [ ] DFT: Discrete Fourier Transform ( ) ( ) ( ) ( ) Congruence (Integer modulo m) N-point signal

CONTINUITY AND DIFFERENTIABILITY

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

cycle that does not cross any edges (including its own), then it has at least

Brief Introduction to Statistical Mechanics

Case Study VI Answers PHA 5127 Fall 2006

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12

A physical solution for solving the zero-flow singularity in static thermal-hydraulics

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

Time Dependent Quadratic Demand Inventory Models when Delay in Payments is Acceptable

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Pion condensation with neutrinos

Garnir Polynomial and their Properties

P a g e 5 1 of R e p o r t P B 4 / 0 9

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2]

Transcription:

Journl of odrn Pysis 0 80-84 tt://dx.doi.org/0.46/jm.0.805 Publisd Onlin August 0 (tt://www.sip.org/journl/jm) jorn Nutrino Osilltions in Vuum Yubr Frny Prz Crlos Jos Quimby Esul d Físi Univrsidd Pdgógi y nológi d Colombi unj Colombi Drtmnto d Fsi Univrsidd Nionl d Colombi Ciudd Univrsitri Bogotá D.C. Colombi Emil: yubr.rz@ut.du.o jquimby@unl.du.o ivd y 0; rvisd Jun 9 0; td July 0 ABSAC In t ontxt of ty I ssw snrio wi lds to gt ligt lft-ndd nd vy rigt-ndd jorn nutrinos w obtin xrssions for t trnsition robbility dnsitis btwn two flvor nutrinos in t ss of lftndd nd rigt-ndd nutrinos. W obtin ts xrssions in t ontxt of n ro dvlod in t nonil formlism of Quntum Fild ory for nutrinos wi r onsidrd s surositions of mss-ignstt ln wvs wit sifi momnt. xrssions obtind for t lft-ndd nutrino s ftr t ultr-rltivisti limit is tking ld to t stndrd robbility dnsitis wi dsrib ligt nutrino osilltions. For t rigt-ndd nutrino s t xrssions dsribing vy nutrino osilltions in t non-rltivisti limit r diffrnt rst to t ons of t stndrd nutrino osilltions. Howvr t rigt-ndd nutrino osilltions r nomnologilly rstritd s is sown wn t rogtion of vy nutrinos is onsidrd s surositions of mss-ignstt wv kts. Kywords: jorn Frmions; jorn Nutrino Osilltions; rnsition Probbility; Non-ltivisti nd Ultr-ltivisti Aroximtions. Introdution Nutrino ysis is vry tiv r of rsr wi involvs som of t most intriguing roblms in rtil ysis. ntur of nutrinos nd t origin of t smll mss of nutrinos r two xmls of ts kinds of roblms. Sin nutrinos r ltrilly nutrl t ntur of ts lmntry rtils n b jorn or Dir frmions. first ossibility i.. nutrinos bing jorn frmions ws introdud by Etor jorn [] wn suggstd tt mssiv nutrl frmions wit sifi momnt v ssoitd only two liity stts imlying tt nutrinos nd nti-nutrinos r t sm rtils. sond ossibility imlis tt Dir nutrinos r dsribd by four-omonnt sinoril filds wi r diffrnt from sinoril filds dsribing ntinutrinos. In tis work w will onsidr nutrinos s jorn frmions wi is fvord by simliity bus ty v only two dgrs of frdom []. Dirt nd indirt xrimntl vidns sow tt nutrinos r mssiv frmions wit msss smllr tn V [4]. most td wy to gnrt nutrino msss is by mn of t ssw mnism [5]. ss for nutrinos is nssry ingrdint to undrstnd t osilltions btwn nutrino flvor stts wi v bn obsrvd xrimntlly [4]. Nutrino osilltions r origintd by t intrfrn btwn mss stts wos mixing gnrts flvor stts. is nomnon mns tt nutrino rtd in wk intrtion ross wit sifi flvor n b dttd wit diffrnt flvor. Nutrino osilltions wr first dsribd by Pontorvo [6] s n xtnsion for t ltoni stor of t strng osilltions obsrvd in t nutrl Kon systm. Nutrino osilltions n b dsribd in ontxt of Quntum nis [7-] s n lition of t two lvl systm []. Dsrition of nutrino osilltions in t ontxt of Quntum Fild ory (QF) is vry wll studid toi [-0]. In t litrtur it is ossibl to find two kinds of QF modls dsribing nutrino osilltions: intrmdit modls nd xtrnl modls [7]. In t frmwork of intrmdit modls Sssroli dvlod modl bsd in n intrting grngin dnsity wi inluds t ouling btwn two flvor filds [-]. is modl ws frmd by But s ybrid modl owing to it gos lf--wy to QF [7]. Sssroli modl ws first dvlod for ould systm of two Dir qutions [ ] nd tn it ws xtndd for ould systm of two jorn ons []. robbility mlitud of trnsition btwn two nutrino flvor stts for ts two systms [-] ws obtind strting from flvor stts wi r usd on t stndrd trtmnt of nutrino osilltions. stndrd dfinition of flvor stts n origint som ossibl limittions in t dsrition of nutrino

804 osilltions s ws obsrvd by Giunti t l. [4]. Sifilly in rfrn [4] it ws sown tt flvor stts n dfin n roximt Fok s of wk stts in t following two ss: ) In t xtrmly rltivisti limit i.. if nutrino momntum is mu lrgr tn t mximum mss ignvlu of nutrino mss stt; ) for lmost dgnrtd nutrino mss ignvlus i.. if t diffrns btwn nutrino mss ignvlus r mu smllr tn t nutrino momntum. first s lds to t stndrd dfinition of flvor stts. sond s s ssoitd rl mixing mtrix wi is rstritd to sifi intrtion ross. Additionlly ts utors v roosd tt osilltions n b dsribd roritly for ultr-rltivisti nd non-rltivisti nutrinos by dfining rorit flvor stts wi r surositions of mss stts wigtd by tir trnsitions mlituds in t ross undr onsidrtion [4]. By onsidring t limittions mntiond in t lst rgr it ws st down by But in [7] tt Sssroli ybrid modl n only b lid onsistntly if lton flvor wv funtions r onsidrd s obsrvbl nd t ultr-rltivisti limit is tkn into ount. On t otr nd t Sssroli modl dsribing jorn nutrino osilltions [] ws dvlod witout onsidring t four-momntum onsrvtion for nutrinos wi imlis t xistn of sifi momntum for vry nutrino mss stt. min gol of tis work is to study nutrino osilltions in vuum btwn two flvor stts onsidring nutrinos s jorn frmions nd to obtin t robbility dnsitis of trnsition for lft-ndd nutrinos (ultr-rltivisti limit) nd for rigt-ndd nutrinos (non-rltivisti limit). is work is dvlod in t ontxt of ty I ssw snrio wi lds to gt ligt lft-ndd nd vy rigt-ndd jorn nutrinos. In tis ontxt w rform n xtnsion of t modl dvlod by Sssroli in wi t jorn nutrino osilltions r obtind for t s of flvor stts onstrutd s surositions of mss stts [ ]. Our xtnsion onsists in onsidring nutrino mss stts s ln wvs wit sifi momnt. modl tt w onsidr in tis work wi is dvlod in t nonil formlism of Quntum Fild ory s t dvntg tt in t sm tortil trtmnt it is ossibl to study nutrino osilltions for ligt nutrinos nd for vy nutrinos. o do tis w first rform t nonil quntiztion rodur for jorn nutrino filds of dfinit msss nd tn w writ t nutrino flvor stts s surositions of mss stts using quntum fild ortors. Nxt w lult t robbility mlitud of trnsition btwn two diffrnt nutrino flvor stts for t ligt nd vy nutrino ss nd w stblis normliztion nd boundry onditions for t robbility dnsity. s robbility dnsitis for t lft-ndd nutrino s ftr t ultr-rltivisti limit is tking ld to t stndrd robbility dnsitis wi dsrib ligt nutrino osilltions. For t rigtndd nutrino s t xrssions dsribing vy nutrino osilltions in t non-rltivisti limit r diffrnt rst to t ons of t stndrd nutrino osilltions. Howvr t rigt-ndd nutrino osilltions r nomnologilly rstritd s is sown wn t rogtion of vy nutrinos is onsidrd s surositions of mss-ignstt wv kts [5]. osilltions do not tk l in tis s bus t orn is not rsrvd: in otr words t osilltion lngt is omrbl or lrgr tn t orn lngt of t nutrino systm [5]. ontnt of tis work s bn orgnizd s follows: In Stion ftr stblising t jorn ondition w obtin nd solv t two-omonnt jorn qution for fr frmion; in Stion w onsidr ty I ssw snrio wi lds to gt ligt lft-ndd nutrinos nd vy rigt-ndd nutrinos; in Stion 4 w obtin t jorn nutrino filds wit dfinit msss tn w rry out t nonil quntiztion rodur of ts jorn nutrino filds nd w obtin rltion btwn nutrino flvor stts nd nutrino mss stts using ortor filds; in Stion 5 w dtrmin t robbility dnsity of trnsition btwn two lft-ndd nutrino flvor stts dditionlly w stblis normliztion nd boundry onditions nd tn w obtin lft-ndd nutrino osilltions for ultr-rltivisti ligt nutrinos; in Stion 6 w study t rigt-ndd nutrino osilltions for non-rltivisti vy nutrinos; finlly in Stion 7 w rsnt som onlusions.. wo-comonnt jorn Eqution In 97 Ettor jorn roosd symmtri tory for ltron nd ositron troug gnrliztion of vritionl rinil for filds wi oby Frmi-Dir sttistis []. Wn tis tory is lid to nutrl frmion wi s sifi momntum tn tr xist only two liity stts. jorn tory imlis tt it dos not xist ntirtils ssoitd to ts frmions i.. jorn frmions r tir own ntirtils. For onvnin w study t qution of motion for nutrl frmions but using t two-omonnt tory dvlod by Cs in [6]. In ontrst wit Dir frmion jorn frmion n only b dsribd by two-omonnt sinor. o sow it w onsidr fr rltivisti frmioni fild of mss m dsribd by t Dir qution i m 0 wr Dir mtrixs oby t ntionmuttion rltions g nd mtri tnsor stisfis g g dig. Using

805 t irlity mtrix givn by 5 i 0 t lftnd rigt-ndd irl rojtions of t frmion fild ψ 5 r rstivly. If w writ t Dir mtrixs rojtd on t irl subs s 5 w obtin tt t ould qutions for t irl omonnts of t frmioni fild r givn by i m () i m (). W introdu t rg onjugtion ortion tt will llow us to dsrib jorn frmions. rgd onjugtd fild (or onjugtd fild) is dfind s ˆ wr t rg onjugtion ortor stisfis t ˆ rortis ˆ ˆ ˆ ˆ ˆ []. Using ts rortis w find tt t onjugtd fild obys t Dir qution i m 0. As dsribs frmion wit sifi rg its onjugtd fild rrsnts frmion wit n oosit rg nd wit t sm mss i.. dsribs t ntifrmion of. Dir qution for sould b rojtd on t irl subs nd for tis rson it 5 is nssry to rmmbr tt ˆ 5 ˆ []. So t ould qutions for t irl omonnts of t onjugtd fild r () i m (4) i m. (5) W obsrv tt t irl omonnts of t frmioni fild undr rg onjugtion nd t irl omonnts of t onjugtd fild r rltd by sowing ow t rg-onjugtion ortion ngs t irlity of filds. W dfin t jorn ondition by tking t frmioni fild s roortionl to t onjugtd fild wr t roortionl onstnt is omlx s ftor of t form wi lys n imortnt rol on i litions of jorn tory. Equlity (6) imlis tt jorn frmions r tir own ntirtils. Now t irl omonnts of t jorn fild stisfy ˆ ˆ. (7) (6) So w n writ Equtions () nd () in t form ˆ i m (8) ˆ i m. (9) If w ly t jorn ondition (7) into t Equtions (4) nd (5) w obtin Equtions (8) nd (9). Additionlly w n obsrv tt Equtions (8) nd (9) r rltd to tmslvs by mns of omlx onjugtion. In tis wy w v gon from four ould qutions dsribing frmion nd its ntifrmion to two dould qutions dsribing lft-ndd irl fild nd rigt-ndd irl fild. Du to t ft tt t rigt-ndd irl fild n b onstrutd from t lft-ndd irl fild [6] s it is sown in (7) now w v only n indndnt fild givn by. For t lst ft w will b bl to dsrib jorn frmion by mns of fild wi now s two omonnts. o vrify tis sntn w rwrit Eqution (8) s ˆ 0 i m. (0) If w dfin ˆ 0 () nd if w tk tn Eqution (0) n b writtn s i m () wi is known s t jorn qution. is qution in wi rtil is indistinguisbl from its ntirtil s two omonnts bus t mtrixs r rojtd on t irl subss of two omonnts. mtrixs r lld jorn mtrixs nd ts sould not b onfusd wit t Dir mtrixs writtn in jorn rrsnttion. Now w r intrstd in knowing t kind of rltions tt jorn mtrixs oby. So w first ly dfinition () into Eqution (9) nd w obtin 0 i m wit ˆ. n w ly i into () nd w v m 0 or its quivlnt m 0 wr w v usd. Aordingly jorn mtrixs sould stisfy rltions g nd tn t fild is stisfying t Klin-Gordon qution givn by m 0. In tis work w v tkn rtiulr rrsnttion of mtrixs wi s rmittd us to writ t twoomonnt jorn qution in t form givn by (). Now w n onsidr mtrix A wi stisfis t following rltions [6] i i A A A A A A i wr rrsnts Puli mtrixs in givn rrsnttion. W tk i wr σ () bing t unit mtrix nd σ Puli mtrixs. Sin stisfis rortis () w

806 Wit t uros of studying t nonil quntiztion for t jorn fild w will obtin t fr-rtil solution of Eqution (4). On t outst w onsidr bisinors wi oby t following rltions σ (5) i (6) wr ts bi-sinors orrsond to liity ignstts. If w tk t momntum in sril oordints sin os sinsin os tn t liity ortor s t form i σ os sin. i sin os (7) W oos t following rrsnttion for ts bisinors i os sin. (8) i sin os W n rov tt t following solution stisfis t two-omonnt jorn Eqution (4) E E ix x ix E E (9) wit x x Et x. W obsrv tt jorn fild n b writtn s surosition of ositiv nd ngtiv nrgy stts. grngin dnsity wi dsribs fr twoomonnt jorn fild is givn by m i i i (0) wr t two-omonnt jorn fild nd its onjugtd fild bv s Grssmnn vribls. It is vry sy to rov tt t two-omonnt jorn v tkn A. So t Eqution () n b writtn s Eqution (4) n b obtind from t grngin dn- sity (0) using t Eulr-grng qution. Additionlly i im 0. (4) w n obtin t following nrgy-momntum tnsor is qution is t wll known two-omonnt jorn qution [78] wi will b solvd in nxt from (0) substion. m i g i i i. Cnonil Quntiztion for jorn Fild Following t stndrd nonil quntiztion rodur w now onsidr t jorn fild nd its onjugtd fild s ortors wi stisfy t usul nonil ntionmuttion rltions givn by ˆ ˆ ˆ ˆ r t r' t r t r' t ˆ ˆ r t r' t r r' 0 wr. Using t Hisnbrg qution for t jorn fild i ˆ ˆ ˆ t r t ' t H r w n obtin its orrsonding jorn Eqution (4). By mns of t nrgy-momntum tnsor it is ossibl to rov tt t Hmiltonin ortor n b writtn s ˆ ˆ ˆ m ˆ H ˆ ˆ ˆ x i i i σ. xnsion in Fourir sris for t jorn fild ortor is [4-6] (s Eqution ()). wr w v usd t fr-rtil solution (9) nd ortors ˆ ˆ wi stisfy t ntionmuttion rltions ˆ ˆ ' '. ˆ ˆ ' ˆ ˆ ' 0 n w n idntify ˆ s t nniiltion ortor nd ˆ s t rtion ortor of jo- rn frmion wit momntum nd liity.. sss for jorn Nutrino Filds most td wy to gnrt nutrino msss is troug t ssw mnism. In tis stion w onsidr ty I ssw snrio wi lds to gt ligt lft-ndd nutrinos nd vy rigt-ndd nutrinos. For t s of two nutrino gnrtions Dir-jorn mss trm is givn by [9] D ˆ D Y N N H.. () wr H.. rrsnts t rmiti onjugt trm is t vtor of flvor nutrino filds writtn s N ˆ d ix ix x E ˆ E ˆ () π E

807 N ˆ () wr rrsnts doublt of lft-ndd nutrino filds tiv undr t wk intrtion nd rrsnts doublt of rigt-ndd jorn nutrino filds non tiv (stril) undr t wk intrtion. s doublts r givn by ;. (4) D In t Dir-jorn trm () is 4 4 non-digonl mtrix of t form ' D D (5) ' D wr nd D r mtrixs. vtor of nutrino filds wit dfinit msss n n b writtn by mn of unitry mtrix U s follows N U n (6) wr n s t form n n. (7) n 4 unitry mtrix U is osn in su wy tt D t non-digonl mtrix n b digonlizd troug t similrity trnsformtion U D U (8) wr is digonl mtrix wi is dfind by m b b wr b 4. msss of t nutrino filds of dfinit msss r m wit 4. ssw snrio is stblisd imosing t following onditions into t mtrix (5): ' ' D 0 D kj tus t mtrix kj is digonlizd s D U U l 0 0 (9) wr l is t ligt nutrino mss mtrix nd is t vy nutrino mss mtrix. If t unitry mtrix U is xnding onsidring trms until of t ordr ' D t ligt nd vy nutrino mss mtrixs n b writtn s l m 0 m 0 ;. (0) 0 m 0 m4 Dir-jorn mss trm () n b writtn in trms of t nutrino filds of dfinit msss s D ˆ ˆ Y nln n n H.. () wr t mtrixs l nd r givn by (0) nd t doublts nd n r writtn s n n ; n. 4 () nutrino filds of dfinit msss nd v ssoit rstivly t ligt msss nd m m f v m m f v nd t nutrino filds of dfinit msss nd 4 v ssoit rstivly t vy msss m f v nd 4 44v v f m f wr b r Yukw oulings m is t ltron mss nd m is t muon mss. As it will b sown in t nxt stion strting from t Dir-jorn mss trm D ˆ ˆ Y H.. () wr nd r t flvor doublts of non-dfinit msss givn by (4) wil nd r non-digonl mtrixs it will b ossibl to obtin t Dir-jorn mss trm () ftr t digonliztion of t mtrixs nd. 4. ss nd Flvor Nutrino Stts In t nxt w suos tt t jorn filds nd dsrib t tiv ligt lft-ndd nutrinos tt r rodud nd dttd in t lbortory wil t jorn filds nd dsrib t stril vy rigt-ndd nutrinos wi tr xist in ty I ssw snrio. In t Stion () w v rsntd lgrngin dnsity (0) wi dsribs fr jorn frmion. is lgrngin dnsity n b xtndd to dsrib systm of two flvor lft-ndd nutrinos nd two flvor rigtndd nutrinos wit non-dfinit msss. Using t Dir-jorn mss trm givn by () t lgrngin dnsity dsribing tis systm is givn by i i i (4) i H.. wr t non-digonl mss mtrixs nd r writtn s i i m m (5) i i m m

808 i i 4 m m (6) i4 i4 m m W obsrv tt t form of t mtrixs nd is t sm. In t nxt w will rstrit to t lftndd jorn nutrinos but t rsults r dirtly xt ndd to t rigt-ndd jorn nutrinos. From t Eulr-grng qutions w obtin tt t ould qution of motion for t flvor lft-ndd nutrino filds nd r i i i im im (7) i i im i im (8) rstivly. W obsrv tt flvor nutrino filds r ould by mns of t rmtr m. Wit t uros of douling t qutions of motion for t flvor lft-ndd nutrino filds now w onsidr t most gnrl unitry mtrix U givn by U i i i i (9) i wr t ss nd i r s onsqun of t jorn ondition (7). dfinit-mss nutrino fild doublt n givn by () is rltd to t flvor lft-ndd nutrino doublt givn by (4) by mn of U n. (40) Witout lost of gnrlity w n ng t ss of t flvor lft-ndd nutrino filds by mns of i i x nd x. us i tr is just s x tt n not b limi- ntd. So t mtrix U n b rwrittn s U i i. (4) Now t digonliztion of t mss mtrix (5) givn by is vlid for wit U U dig m m (4) D m m m m m 4 m (4) nd tus t nutrino filds wit dfinit msss nd v rstivly t following msss m m m (44) i m m m. ( 45) W obsrv tt in t xrssion for m rs t ftor x i wi suggst tt tis mss ould b omlx. Howvr t digonliztion givn by (4) is not omltly rigt bus is symmtri mtrix. So from (4) t digonliztion sould b of t form D U U (46) wr w v onsidrd tt tis mtrix is rmiti i... So t vlus m nd m r t qudrti roots of t ignvlus of. is lst rsult imlis tt ts ignvlus n b multilid by omlx s. xrssion (40) givs t mixing of t flvor nutrino filds in trms of t nutrino filds wit dfinit msss. nutrino filds wit dfinit msss nd oby jorn fild qutions of t form i im (47) i im. (48) i wit t uros of liminting t s from t lst qution of motion w n mk t following i s trnsformtion x. Now t unitry mtrix n b writtn s U. i i (49) W obsrv tt t s x i ws limintd from t lst qution of motion but not from t unitrin mtrix U l. So it rovs tt tis s is ysil nd sould b involvd in som rosss. is s ould ly n imortnt rol in t s of doublt bt dy ross. Following similr rodur for t rigt-ndd jorn nutrinos w find tt t dfinit-mss nutrino fild doublt n givn by () is rltd to t flvor rigt-ndd nutrino doublt givn by (4) by mn of wr t unitry mtrix U n (50) U is givn by

809 wr U i. i is givn by m m m wit m m 4 m. (5) (5) Nxt w onsidr t nonil quntiztion of t nutrino filds wit dfinit mss by stting t ntionmuttion rltions givn by ˆ ˆ r b r' b r r ' ˆ ˆ r br ' 0 nd ˆ ˆ b r r ' 0 wr b 4 rrsnt nutrino mss stts. E on of t dfinit-mss nutrino fild ortors ˆ x obys jorn qution. It is ossibl to x on of ts fild ortors on ln-wv nd bsis st s ws sown in () (s Eqution (5)). wr E m is t nrgy of t nutrino fild wit dfinit mss wi is tggd by 4. flvor nutrino fild ortors tggd by ˆ r dfind s surosition of t dfinit-mss nutrino fild ortors ˆ givn by (5) troug t xrssion ˆ x U ˆ x (54) wr U is t unitrin mtrix dfind by (49) for lft-ndd nutrinos nd by (5) for rigt-ndd nutrinos mnwil nutrino flvor stts r dfind in trms of t nutrino mss stts s U. (55) us w v found rltion btwn nutrino flvor stts nd nutrino mss stts using ortor filds. As flvor stts r ysil stts sin ty ould b dttd in intrtion rosss flvor stts r non-sttionry. So tir tmorl volution givs t robbility of trnsition btwn tm. rfor tis robbility dsribs jorn nutrino osilltions studid s follows. 5. ft-hndd Nutrino Osilltions Now w will fouss our intrst in t dsrition of lft- ndd nutrino osilltions in vuum from inmtil oint of viw. For tis rson w will not onsidr in dtil t wk intrtion rosss involvd in t rtion nd dttion of lft-ndd nutrinos. Howvr ts rosss r mnifstd wn boundry onditions r imosd in t robbility mlitud of trnsition btwn two nutrino flvor stts. W suos tt nutrino wit sifi flvor is rtd in oint of s-tim x0 t0 r0 s rsult of rtin wk intrtion ross. W will dtrmin t robbility mlitud to find out t nutrino wit notr flvor in diffrnt oint of s-tim x t r. W ssum tt nutrinos r rtd undr t sm rodution ross wit diffrnt vlus of nrgy nd momntum. s dynmil quntitis r rltd mong tmslvs undr t sifi rodution ross. initil lft-ndd nutrino flvor stt in t rodution tim ( t 0 ) orrsonds to t following surosition of nutrino mss stts t 0 A B. (56) wr A B. E of ts nutrino mss stts s ssoitd sifi four-momntum. W ssum tt in t rodution oint it ws rtd lft-ndd ltroni nutrino wit mssiv fild ving four-momntum givn by E wit. initil lft-ndd ltroni nutrino stt stisfying t ondition A B is writtn s i t0 (57) wr t sum ovr liitis is tkn ovr t nutrino mss stts. is sum ovr liitis must b onsidrd to dsrib roritly t initil lft-ndd nutrino flvor stt bus t liity is rorty wi is not dirtly msurd in t xrimnts. mnnr s t ltroni lft-ndd nutrino stt s bn built in t rodution oint is in grmnt wit t xrimntl ft tt lft-ndd nutrinos r ultr-rltivisti. nutrino mss stts involv in t surosition givn by (57) r obtind from t vuum stt s ˆ 0 i x 0 wr w v inludd ts ftor x i x 0. is s ftor givs us informtion bout t fours tim wr t lft-ndd nutrino ws rtd. robbility mlituds for trnsitions to ltroni nd muoni lft-ndd nutrinos r rstivly givn by d i x i ˆ ˆ x E ˆ x E (5) π E

80 E E i X ix ˆ X 0 0 (58) x t π E E E E 0 ˆ X x t (59) i X ix 0 π E E wr w v usd som xnsions ovr t jorn filds nd w v tkn X x x0 wi orrsonds to four-vt or ssoitd to t distn nd tim of nutrino rogtion. robbility dnsitis rstivly r X π 4 X X E E EE sin X π EE E E X EE EE sin X E E E E (60) (6) ount tt sinors wr w v tkn into nd r t sm bus vtors nd r o-linr. robbility dnsitis (60) nd (6) tt w v found rsnt sr ious roblm. If w fix X 0 into (60) nd (6) w find tt X 0 π 4 E E EE (6) π X 0 (6) E E EE nd w obsrv tt t robbility dnsity (6) n b diffrnt from zro i.. it n xist muoni nutrino in t rodution oint wi disgrs wit t initil onditions. origin of tis roblm is rltd to t wk stt dfinition (55) tt w v usd bfor. As it ws rviously mntiond into t introdution t flvor dfinition (55) is not omltly onsistnt nd it is nssry to dfin rorit flvor stts [4]. Ultr-ltivisti imit: ft-hndd Nutrino Osilltions is roblm n b solvd by tking n roximtion in t robbility dnsitis (60) nd (6) bsd on t ft tt lft-ndd nutrinos r ultr-rltivisti rtils bus tir msss r vry smll. Hr w onsidr nrgy nd momntum diffrnt for vry mss stt. In gnrl w n writ 4 E m m (64) 4 E E m m (65) wr t rmtrs nd r dtrmind in t rodution ross nd E is t nrgy for t s in wi nutrinos wr msslss. For instn for t ion dy ross w v E m mπ m π m m π 4mπ (66) (67) wr m is t muon mss nd m π is t ion mss. Bus for t ultr-rltivisti limit m 0 w n roximt t xrssions (64) nd (65) to m E (68) E

8 m E E. (69) E Now it is ossibl to rov tt t rigt sid of t rltion E E m m EE 8E (70) n b roximtd to t unit bus m E 0 wr m m m. On t otr nd nutrino rogtion tim is not msurd in nutrino xri- mnts [97]. In tis kind of xrimnts is msurd t distn btwn t nutrino sour nd t d- btwn ttor. By tis rson it n b ossibl to find n- tt stbliss rltion lytil xrssion nd t rogtion distn. In our ro using ln wvs for t ultr-rltivisti limit w n writ. (7) is rltion imlis tt t rogtion distn nd t rogtion tim for nutrinos r roximtly qul bus in t ultr-rltivisti limit nutrino mss stt s mss too smll nd its vloity of rogtion v k is roximtly qul to sd vloity i.. vk. Howvr most ris rltion btwn nd must b dsribd by n xrssion tt sould inlud xliitly t vloitis of t two nutrino mss stts involvd in su wy tt tis xrssion for t ultr-rltivisti limit sould ld to (7). So for t ultr-rltivisti limit t robbility dnsitis (60) nd (6) n b writtn s m sin (7) π 4E m sin π 4E (7) wr w v usd nd m m m. Undr tis roximtion it is lr tt ts robbility dnsity dos not dnd from t rodution ross du to tt tr is no dndn from. us ts robbility dnsitis stisfy t boundry onditions tt w v imosd. In t nxt w will rov tt t robbility dnsitis (7) nd (7) v t form of t stndrd robbility dnsitis for nutrino osilltions. In t ontxt of t stndrd formlism of nutrino osilltions (ssuming CP onsrvtion) for t two gnrtion s onsidring r t rrsnttion of t unitry mtrix U tt rs into t xrssion (40) is givn b y [0] os sin U (74) sin os wr is t mixing ngl. If w omr t unitry mtrix givn by (49) wit t on givn by (74) w obsrv tt os nd tn it is vry sy to obtin tt sin. (75) Substituting (75) into (7) nd (7) w obtin t xrssions sin sin π π m 4E m 4E sin sin (76) (77) wi r t stndrd robbility dnsitis for lftndd nutrino osilltions in t two flvor s [0]. 6. igt-hndd Nutrino Osilltions initil rigt-ndd nutrino flvor stt in t rodution tim ( t 0 ) orrsonds to t following surosition of nutrino mss stts t C D. (78) 0 4 wr C D. E of ts nutrino mss stts s ssoitd sifi four-momntum. W ssum tt in t rodution oint it ws rtd rigt-ndd ltroni nutrino wit mssiv fild ving four-momntum givn by E wit 4. initil rigt-ndd ltroni nutrino stt stisfying t ondition C D is writtn s i t0 4 (79) wr t sum ovr liitis is tkn ovr t nutrino mss stts. robbility mlituds for trnsitions to ltroni nd muoni rigt-ndd nutrinos r rstivly givn by X 0 ˆ x t 0 E E 4 i X 4 i4 X 4 π E E4 (80)

8 X 0 ˆ x t π robbility dnsitis X 0 E E 4 4 i X i X 4 4. E E4 X X rstivly r 4 π EE 4 4 E E4 E E4 X EE 4 4 4 sin (8) (8) X π EE wr w v tkn into oun nor nd 4 r t sm bus vtors nd r o-linr. robbility dnsitis (8) nd (8) 4 t tt si s 4 4 E E4 4 E EE 4 EE 4 4 E 4 sin X (8) tt w v found rsnt srious roblm. If w fix X 0 into (8) nd (8) w find tt 4 X 0 E E4 4 (84) π X 0 4 E E 4 (85) π EE 4 nd w obsrv tt t robbility dnsity (85) n b diffrnt from zro. Non-ltivisti imit: igt-hndd Nutrino Osilltions is roblm n b solvd by tking n roximtion in t robbility dnsitis (8) nd (8) bsd on t ft tt rigt-ndd nutrinos r non-rltivisti rtils bus tir msss r vry lrg. By tis rson w tk t non-rltivisti roximtion i.. m. So w v E m. (86) m rfor w suos tt vy rigt-ndd jorn nutrinos oby simly t rltivisti disrsion rltio n. So w obtin t following roximtion E E 4 4 EE 4 vv 4 v v4v v4 8 wr t non-rltivisti vloity of t nutrino is i vi 0 mnwil t s is roximtd to m i E E m (88) 4 4 4 wit m4 m m4. So t robbility dnsitis of trnsition r givn by m4 sin π m4 sin π (86) (87) wr is givn by (5). lst robbility dnsitis stisfy t normliztion nd boundry onditions. Unlikly to t s of lft-ndd nutrino osilltions dsribd by (60) nd (6) t rgumnt of t riodi funtion for t rigt-ndd nutrino osilltions dnds on t linr mss diffrn m4 nd t rogtion tim. dsrition of vy rigt-ndd nutrino osilltions tt w rsnt r ould b of

8 intrst in osmologil roblms []. As it s bn roosd in t litrtur vy-vy nutrino osilltions ould b rsonsibl for t bryon symmtry of t univrs troug ltognsis mnism [-4]. But it sould b notd tt if t rogtion of vy rigt-ndd nutrinos is onsidrd s surositions of mss-ignstt wv kts [5] tn t osilltions do not tk l bus t orn is not rsrvd: in otr words t osilltion lngt is omrbl or lrgr tn t orn lngt of t rigt-ndd nutrino systm [5]. 7. Conlusions In tis work w v studid nutrino osilltions in vuum btwn two flvor stts onsidring nutrinos s jorn frmions. W v rformd tis study for t s of flvor stts onstrutd s surositions of mss stts xtnding t Sssroli modl wi dsribs jorn nutrino osilltions by onsidring nutrino mss stts s ln wvs wit sifi momnt. In t ontxt of ty I ssw snrio wi lds to gt ligt lft-ndd nd vy rigt-ndd jorn nutrinos t min ontribution of tis work s bn to obtin in sm formlism t robbility dnsitis wi dsrib t osilltions for ligt lftndd nutrinos (ultrrltivisti limit) nd for vy rigt-ndd nutrinos (non-rltivisti limit). In tis work w v rformd t nonil quntiztion rodur for jorn nutrino filds of dfinit msss nd tn w v writtn t nutrino flvor stts s surositions of mss stts using quntum fild ortrnsition btwn two diffrnt nutrino flvor stts for t ligt nd vy nutrino ss nd w v stb- lisd normliztion nd boundry onditions for t tors. W v lultd t robbility mlitud of robbility dnsity. Aftr t ultr-rltivisti limit ws tkn in t robbility dnsitis for t lft-ndd nutrino s ld to t stndrd robbility dnsitis wi dsrib ligt nutrino osilltions. For t rigt-ndd nutrino s t xrssions dsribing vy nutrino osilltions in t non-rltivisti limit wr diffrnt rst to t ons of t stndrd nutrino osilltions. Howvr t rigt-ndd nutrino osilltions r nomnologilly rstritd s is sown wn t ro- of mss-ignstt wv kts [5]. gtion of vy nutrinos is onsidrd s surositions is work stblis frmwork to study jorn nutrino osilltions for t s wr mss stts r dsribd by Gussin wv kts s will b rsntd in fortoming work [5]. wv kt trtmnt is nssry owing to t nutrinos r rodud in wk intrtion rosss witout sifi momnt. Additionlly t ln wv trtmnt n not dsrib rodution nd dttion lolizd rosss s our in nutrino osilltions. 8. Aknowldgmnts C. J. Quimby tnks DIB by t finnil suort rivd troug t rsr rojt Proidds ltromgnétis y d osilión d nutrinos d jorn y d Dir. C. J. Quimby tnks lso Virrtorí d Invstigions of Univrsidd Nionl d Colombi by t finnil suort rivd troug t rsr grnt orí d Cmos Cuántios lid sistms d l Físi d Prtíuls d l Físi d l tri Condnsd y l dsriión d roidds dl grfno. EFEENCES [] E. jorn ori simmtri dll lttron dl ositron Nuovo Cimnto Vol. 4 97. 7. [] P. B. Pl nd. N. otr siv Nutrinos in Pysis nd Astroysis World Sintifi Publising Singor 004. [] C. Giunti nd C. Kim Fundmntl of Nutrinos in Pysis nd Astroysis Oxford Univrsity Prss Nw York 007. [4] K. Nkmur t l. Prtil Dt Grou t viw of Prtil Pysis Journl of Pysis G Vol. 7 00 Artil ID: 0750. [5] A. Bottino C. W. Kim H. Nisiur nd W. K. Sz odl for ton ixing Angls nd jorn Nutrino sss Pysil viw D Vol. 4 No. 986. 86-867. doi:0.0/pysvd.4.86 [6] B. Pontorvo Nutrino Exrimnts nd t Problm of Consrvtion of toni Crg Sovit Pysis JEP Vol. 6 968. 984. [7] S.. Bilnky nd B. Pontorvo ton ixing nd Nutrino Osilltions Pysis orts Vol. 4 No. 4 978. 5-6. doi:0.06/070-57(78)90095-9 [8] B. Kysr On t Quntum nis of Nutrino Osilltion Pysil viw D Vol. 4 No. 98. 0-6. doi:0.0/pysvd.4.0 [9] C. Giunti C. W. Kim nd U. W. Wn Do Nutrinos lly Osillt? Quntum nis of Nutrino Osilltions Pysil viw D Vol. 44 No. 99. 65-640. doi:0.0/pysvd.44.65 [0] J. i Quntum nis of Nutrino Osilltions Pysil viw D Vol. 48 No. 9 99. 48-45. doi:0.0/pysvd.48.48 []. Zrl From Kons to Nutrinos: Quntum nis of Prtil Osilltions At Pysi Poloni B Vol. 9 998. 95-956. [] E. Sssrolli Nutrino Osilltions: A ltivisti Exml of wo-vl Systm Amrin Journl of Pysis Vol. 67 No. 0 999. 869-875. doi:0.9/.940 []. Blson nd G. Vitillo Quntum Fild ory of Frmion ixing Annls of Pysis Vol. 44 No. 995. 8-. doi:0.006/y.995.5

84 [4] E. Alfinito. Blson A. Iorio nd G. Vitillo Squzd Nutrino Osilltions in Quntum Fild ory Pysis ttrs B Vol. 6 No. -4 995. 9-96. doi:0.06/070-69(95)07- [5] C. Y. Crdll Corn of Nutrino Flvor ixing in Quntum Fild ory Pysil viw D Vol. 6 No. 7 000 Artil ID: 07006. doi:0.0/pysvd.6.07006 [6] A. D. Dolgov Nutrinos in Cosmology Pysis orts Vol. 70 No. 405 00. -55. doi:0.06/s070-57(0)009-4 [7]. But Osilltions of Nutrinos nd sons in Quntum Fild ory Pysis orts Vol. 75 No. - 00. 05-8. doi:0.06/s070-57(0)0058-0 [8] Y. F. i nd Q. Y. iu A Prdox on Quntum Fild ory of Nutrino ixing nd Osilltions Journl of Hig Enrgy Pysis Vol. 006 006 Artil ID: 048. doi:0.088/6-6708/006/0/048 [9]. Dvornikov nd J. lmi Osilltions of Dir nd jorn nutrinos in ttr nd gnti Fild Pysil viw D Vol. 79 No. 009 Artil ID: 05. doi:0.0/pysvd.79.05 [0] E. K. Akmdov nd J. Ko Nutrino Osilltions: Quntum nis vs. Quntum Fild ory Journl of Hig Enrg y Pysis Vol. 00 No. 4 00. 8. doi:0.007/jhep04(00)008 [] E. Sssroli Flvor Osilltions in Fild ory tt://rxiv.org/bs/-/9609476v [] E. Sssroli Nutrino Flvor ixing nd Osilltions in Fild ory tt://rxiv.org/bs/-/9805480 [] E. Sssroli wo Comonnt ory of Nutrino Flvor ixing tt://rxiv.org/bs/-/9709v [4] C. Giunti C. W. Kim nd U. W. mrks on t Wk Stts of Nutrinos Pysil viw D Vol. 45 No. 7 99. 44-40. doi:0.0/pysv D.45.44 [5] C. W. Kim C. Giunti nd U. W. Osilltions of Non-ltivisti Nutrinos Nulr Pysis B Prodings Sulmnts Vol. 8 No. 99. 7-75. doi:0.06/090-56(9)906 7-Q [6] K.. Cs formultion of t jorn ory of Nutrino Pysil viw Vol. 07 No. 957. 07-6. doi:0.0/pysv.07.07 [7] P. B. Pl Dir jorn nd Wyl Frmions Amrin Journl of Pysis Vol. 79 No. 5 0. 485. doi:0.9/.54979 [8] E. rs wo-comonnt jorn Eqution- Novl Drivtions nd Known Symmtris J. od. Pys Vol. No. 0 0. 09-4. doi:0.46/jm.0.07 [9] S.. Bilnky nd S.. Ptov ssiv Nutrinos nd Nutrino Osilltions viws of odrn Pysis Vol. 59 No. 987. 67-754. doi:0.0/vodpys.59.6 7 [0] C. W. Kim nd A. Pvsnr Nutrinos in Pysis nd Astroysis Hrwood Admi Publisrs Bsl 99. [] S. S. Grstin E. P. Kuzntsov nd V. A. ybov formultion of t jorn ory of Nutrino Pysis-Uski Vol. 40 No. 8 997. 77. doi:0.070/pu997v040n 08ABEH0007 [] E. K. Akmdov V. A. ubkov nd A. Yu. Smirnov Bryognsis vi Nutrino Osilltions Pysil viw ttrs Vol. 8 No. 7 998. 59-6. doi:0.0/pysvtt.8.59 [].. Volks Nutrinos in Cosmology wit Som Signifint Digrssions Prtil Pysis nd Cosmology: ird roil Workso on Prtil Pysis nd Cosmology Nutrinos Brns nd Cosmology Sn Jun 9- August 00. 0-9. doi:0.06 /.5450 [4] A. D. Dolgov CP Violtion in Cosmology. tt://rxiv.org/bs/-/05v [5] Y. F. Pérz nd C. J. Quimby morl Disrsion Effts of jorn s Wv Pkts for Nutrino Osilltions in Vuum rintd in Prrtion.