Time: 1 hour 30 minutes

Similar documents
Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

6664/01 Edexcel GCE Core Mathematics C2 Bronze Level B3

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

6665/01 Edexcel GCE Core Mathematics C3 Bronze Level B3

Time: 1 hour 30 minutes

6664/01 Edexcel GCE Core Mathematics C2 Bronze Level B2

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

6664/01 Edexcel GCE Core Mathematics C2 Bronze Level B4

Time: 1 hour 30 minutes

6664/01 Edexcel GCE Core Mathematics C2 Gold Level G2

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

A booklet Mathematical Formulae and Statistical Tables might be needed for some questions.

Time: 1 hour 30 minutes

Core Mathematics C1 Advanced Subsidiary

Time: 1 hour 30 minutes

A booklet Mathematical Formulae and Statistical Tables might be needed for some questions.

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Higher Unit 9 topic test

PhysicsAndMathsTutor.com

Paper Reference. Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Orange or Green)

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Core Mathematics C1 Advanced Subsidiary

Time: 1 hour 30 minutes

Examiner's Report Q1.

Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Friday 6 June 2008 Afternoon Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

6664/01 Edexcel GCE Core Mathematics C2 Silver Level S1

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C3 Advanced Thursday 15 January 2009 Morning Time: 1 hour 30 minutes

MEI STRUCTURED MATHEMATICS 4751

Time: 1 hour 30 minutes

PMT. GCE Edexcel GCE Mathematics Core Mathematics C1 (6663) June Mark Scheme (Results) Mathematics. Edexcel GCE

Time: 1 hour 30 minutes

PhysicsAndMathsTutor.com

Time: 1 hour 30 minutes

PMT GCE. Edexcel GCE Core Mathematics C1 (6663) January Mark Scheme (Results) Core Mathematics C1 (6663) Edexcel GCE

Time: 1 hour 30 minutes

PhysicsAndMathsTutor.com

Time: 1 hour 30 minutes

Edexcel GCE Further Pure Mathematics FP1 Advanced/Advanced Subsidiary

Core Mathematics C3 Advanced Subsidiary

Introduction to Advanced Mathematics (C1) THURSDAY 15 MAY 2008

PhysicsAndMathsTutor.com

Edexcel GCE Further Pure Mathematics FP2 Advanced/Advanced Subsidiary

Paper Reference. Core Mathematics C3 Advanced. Wednesday 20 January 2010 Afternoon Time: 1 hour 30 minutes. Mathematical Formulae (Pink or Green)

Edexcel GCE Core Mathematics C2 Advanced Subsidiary

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Monday 25 January 2010 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Tuesday 15 June 2010 Morning Time: 1 hour 30 minutes

6683/01 Edexcel GCE Statistics S1 Silver Level S1

Core Mathematics C4 Advanced Level

Paper Reference. Further Pure Mathematics FP3 Advanced/Advanced Subsidiary. Tuesday 26 June 2007 Afternoon Time: 1 hour 30 minutes

6677/01 Edexcel GCE Mechanics M1 Gold Level G5

Paper Reference. Core Mathematics C1 Advanced Subsidiary. Tuesday 10 January 2006 Afternoon Time: 1 hour 30 minutes. Mathematical Formulae (Green)

Paper Reference. Paper Reference(s) 6664/01 Edexcel GCE Core Mathematics C2 Advanced Subsidiary. Monday 2 June 2008 Morning Time: 1 hour 30 minutes

Edexcel GCE Core Mathematics C3 Advanced

Edexcel GCE Core Mathematics C4 Advanced

The statistics used in this report have been compiled before the completion of any Post Results Services.

Mark Scheme (Results) January 2007

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

Paper Reference. Core Mathematics C3 Advanced. Monday 16 June 2014 Morning Time: 1 hour 30 minutes

Mark Scheme (Results) January GCE Core Mathematics C1 (6663/01)

physicsandmathstutor.com Paper Reference Core Mathematics C2 Advanced Subsidiary Monday 21 May 2007 Morning Time: 1 hour 30 minutes

4751 Mark Scheme June Mark Scheme 4751 June 2005

Edexcel GCE Core Mathematics C3 Advanced

Examiners Report/ Principal Examiner Feedback. Summer GCE Core Mathematics C3 (6665) Paper 01

Paper Reference. Paper Reference(s) 6663/01 Edexcel GCE Core Mathematics C1 Advanced Subsidiary

Paper Reference. Further Pure Mathematics FP1 Advanced/Advanced Subsidiary. Wednesday 17 June 2009 Morning Time: 1 hour 30 minutes

Core Mathematics C2 Advanced Subsidiary

Paper Reference. Further Pure Mathematics FP2 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes

GCE EXAMINERS' REPORTS

Paper Reference. Core Mathematics C4 Advanced. Wednesday 18 June 2014 Afternoon Time: 1 hour 30 minutes

Core Mathematics C3 Advanced

MATHEMATICS Unit Further Pure 1

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Tuesday 22 January 2008 Afternoon Time: 1 hour 30 minutes

Foundation Unit 16 topic test

Paper Reference. Paper Reference(s) 6676/01 Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary

Mark Scheme (Results) Summer 2010

Core Mathematics C4 Advanced

Core Mathematics C4 Advanced

Transcription:

Paper Reference(s) 666/0 Edecel GCE Core Mathematics C Bronze Level B4 Time: hour 0 minutes Materials required for eamination papers Mathematical Formulae (Green) Items included with question Nil Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them. Instructions to Candidates Write the name of the eamining body (Edecel), your centre number, candidate number, the unit title (Core Mathematics C), the paper reference (666), your surname, initials and signature. Information for Candidates A booklet Mathematical Formulae and Statistical Tables is provided. Full marks may be obtained for answers to ALL questions. There are questions in this question paper. The total mark for this paper is 75. Advice to Candidates You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Eaminer. Answers without working may gain no credit. Suggested grade boundaries for this paper: A* A B C D E 7 6 55 47 9 Bronze 4 This publication may only be reproduced in accordance with Edecel Limited copyright policy. 007 0 Edecel Limited.

. Simplify ( + 5)( 5). May 007. (a) Epand and simplify (7 + 5)( 5). (b) Epress 7 5 5 in the form a + b5, where a and b are integers. January 00. Given that y = + (a) (b) d y, d, 0, find y d, simplifying each term. June 009 4. A sequence,,,... is defined by where a is a constant. =, n = a n + 5, n, (a) Write down an epression for in terms of a. (b) Show that = a + 5a + 5. Given that = 4 (c) find the possible values of a. () January 0 Bronze 4: 4/

5. (a) Write in the form p + q, where p and q are constants. Given that y = 5 7 +, > 0, (b) find d y, simplifying the coefficient of each term. d January 008 6. Given that can be written in the form p q, (a) write down the value of p and the value of q. Given that y = 5 4 +, (b) find d y, simplifying the coefficient of each term. d January 009 7. The curve with equation y = f() passes through the point (, 0). Given that find f(). f () = 8 +, (5) January 0 8. The equation + (k ) + ( k) = 0, where k is a constant, has two distinct real roots. (a) Show that k satisfies (b) Find the set of possible values of k. k + k > 0. January 0 Bronze 4: 4/

9. (a) Factorise completely 4. (b) Sketch the curve C with equation y = 4, showing the coordinates of the points at which the curve meets the ais. The point A with -coordinate and the point B with -coordinate lie on the curve C. (c) Find an equation of the line which passes through A and B, giving your answer in the form y = m + c, where m and c are constants. (5) (d) Show that the length of AB is k0, where k is a constant to be found. January 00 0. (a) Factorise completely 6 + 9 (b) Sketch the curve with equation y = 6 + 9 showing the coordinates of the points at which the curve meets the -ais. Using your answer to part (b), or otherwise, (c) sketch, on a separate diagram, the curve with equation y = ( ) 6( ) + 9( ) showing the coordinates of the points at which the curve meets the -ais. June 009 Bronze 4: 4/ 4

. The curve C has equation y = f(), > 0, where Given that the point P (4, 5) lies on C, find (a) f(), d y 5 =. d (b) an equation of the tangent to C at the point P, giving your answer in the form a + by + c = 0, where a, b and c are integers. (5) May 00 END TOTAL FOR PAPER: 75 MARKS Bronze 4: 4/ 5

Question Number. 9 5 or Scheme 5 5 5 5 or or 5 5 5 M Marks = 4 Acso. (a) 7 5 5 5 5 75 6, 45 ( st A for 6, nd A for 45) [] M A, A (b). (a) 7 5 5 5 5 Correct denominator without surds, i.e. 9 5 or 4 4 5 or 4 5 dy 6 d 4 4 6 (b) C M A A [6] M A A M A 4 4. (a) (b) C A a + 5 B () a"( a 5)" 5 M [6] = a 5a 5 (*) A cso (c) 4 = a 5a 5 a 5a 6( 0) or 6 a 5 a M (a + 9)( a 4) = 0 M a = 4 or 9 A [6] Bronze 4: 4/ 6

Question Number 5. (a) p = q = (b) y 5 7 Scheme Marks p, q = B B dy d 5 (or 5 0 ) (5 7 correctly differentiated) B Attempt to differentiate either p with a fractional p, giving k p 6. (a) or 7. (b) or y d or q = d = 0 0 (k 0), (the fraction p could be in decimal form) or q with a negative q, giving k q p (Not ) 8 f( ) ( c) (k 0) M (f ( ) = 0 ) 0 = 4 ( ) 4 + c M c = 9 [f () = 4 4 + + 9] Aft Aft [6] B B M A Aft Aft [6] M A A A [5] Bronze 4: 4/ 7

Question Scheme Marks Number 8. (a) b 4ac = (k ) 4( k ) M k 6k + 9 4( k ) > 0 or (k ) + 8k > 0 or better M k + k > 0 * (b) (k + )(k )[= 0] M Critical values are k = or A (choosing outside region) 9. (a) ( 4) ( )( ) k > or k < (b) y Shape ( turning points required) Acso M A cao B M A B [7] Through (or touching) origin B (c) Either y = (at = ) or y = 5 (at = ) Gradient = "5 " ( ) Crossing -ais or stopping at -ais (not a turning point) at (, 0) and (, 0). y " 5" m( ) or y " " m( ( )), y 5 ( ) or the correct equation in any form, y 6 (d) AB ( ) " 5 " 6 0 4 0 60 B B M M A A (5) M A [] Bronze 4: 4/ 8

Question Number Scheme Marks 0. (a) ( 6 9) B ( )( ) M A (b) y Shape B Through origin (not touching) Touching -ais only once touching at (, 0), or on -ais [Must be on graph not in a table] B B Bft (c) y Moved horizontally (either way) (, 0) and (5, 0), or and 5 on - ais M A 5. (a) 5 y c [9] MAA f 5 5 6 0 8 c c = 9 M A (5) f ( ) 0 9 (b) 5 5 m 4 7.5 or 5 Equation is: y 5 4 y5 50 0 o.e. M MA A [9] Bronze 4: 4/ 9

Eaminer reports Question This proved an easy starter for most candidates. Some identified this as a difference of two squares, and simply wrote down 9 5, but most opted to multiply out and sign slips spoilt some answers with 9 + 5 appearing quite often. Others thought that 5 = 5 and some wrote = 6. Question This question was answered very well, with many candidates scoring full marks. Mistakes in part (a) were usually from incorrect squaring of the 5 term, sign errors or errors in collecting the terms. In part (b), the method for rationalising the denominator was well known and most candidates, whether using their answer to part (a) or not, proceeded to a solution. A common mistake, however, was to divide only one of the terms in the numerator by 4. Question This question was answered very well with most candidates knowing and applying the rules for differentiation and integration correctly although the use of the notation for this topic, especially the integration sign, is still poor. as Most differentiated correctly in part (a) and although many wrote, some still thought the derivative was 6 or 6. Similar problems arose with the integration in part (b) and some lost marks through failing to simplify their epressions and of course others forgot the +c. Question 4 Most candidates answered this question well. Few failed to write down a + 5 or a() + 5 in part (a) and the minimal evidence of a(a + 5) + 5 almost always preceded the answer in part (b). A small minority of candidates still do not understand the notation in this question and their answers often contained terms in. Some candidates had difficulties with part (c). The correct equation was usually identified but sometimes it was not reduced to a three-term quadratic or the method of solution was incorrect. A few attempted to square root both sides and it was not uncommon to see a + 5a = 6. Some candidates obtained a = 4 by trial but credit will only be given for a complete solution leading to both answers. Question 5 Most candidates were successful in finding at least one correct term from their division in part (a), but mistakes here included dividing only one term in the numerator by and multiplying by instead of dividing. Just a few seemed unaware that was equivalent to.the vast majority who scored both marks (a) went on to score full marks in part (b). Much of the differentiation seen in part (b) was correct, but occasionally terms were not simplified. Some candidates failed to cope with the differentiation of the 'easier' part of the epression, 5 7. Bronze 4: 4/ 0

Question 6 Good candidates generally had no difficulty with the division in part (a) of this question, but others were often unable to cope with the required algebra and produced some very confused 5 solutions. A common mistake was to "multiply instead of divide", giving, and sometimes was interpreted as. Eaminers saw a wide variety of wrong answers for p and q. Most candidates were able to pick up at least two marks in part (b), where follow-through credit was available in many cases. While the vast majority used the answers from part (a), a few differentiated the numerator and denominator of the fraction term separately, then divided. Question 7 This question was done well by most candidates and the actual process of integration was well practised. There were a large number of completely correct responses. Some candidates however did not realise that the constant of integration had to be found and stopped after integrating. They lost the final two marks. For those who continued the majority of errors arose because they incorrectly evaluated their epression with =. This was due to the minus sign, which had to be cubed and squared. Some who did substitute correctly failed to realise that their epression in c needed setting equal to zero and so they made a false conclusion leading to c = 9. Question 8 In part (a) most candidates appreciated the need to use b 4ac and the majority of these stated that b 4ac >0 is necessary for two real roots. Some candidates however only included the inequality in the final line of the answer. They should be aware that a full method is needed in a question where the answer is given. The algebraic processing in solutions was usually correct but common errors were squaring the bracket to give k + 9 and incorrect multiplication by 4. In part (b), the critical values of and were generally found by factorisation but many candidates struggled to give the correct region; others used poor notation < k <. Candidates who gave their final answer in terms of lost the final accuracy mark. Question 9 The parts of this question could be tackled independently of each other and most candidates were able to pick up marks in one or more of the parts. In part (a), it was disappointing that so many failed to give a complete factorisation, commonly leaving the answer as ( 4). Sketches of the cubic graph in part (b) were often very good, even when the link between parts (a) and (b) was not appreciated. A common misconception in part (c) was that the gradient of AB could be found by differentiating the equation of the curve and evaluating at either = or. Apart from this, numerical slips frequently spoiled solutions. A significant number of candidates failed to attempt part (d), but those that did were often successful in obtaining the correct length of AB. Bronze 4: 4/

Question 0 It seemed clear that many candidates did not appreciate the links between the parts of this question and there was much unnecessary work carried out: differentiating to find turning points and tables of values to help draw, not sketch, the curves. Part (a) was usually answered well but not all the successful candidates started by taking out the factor of, rather they tried to use the factor theorem to establish a first factor. Whilst techniques from C (or higher units) may be used in C they are not required and the best approach will not use them. A correct factorisation in (a) should have made the sketch in (b) straightforward. Most drew a cubic curve (but some had a negative cubic not a positive one) and usually their curve either touched or passed through the origin. The most common non-cubic curve was a parabola passing through (0, 0) and (,0). Part (c) looked complicated but those who spotted that they were sketching f( - ) had few problems in securing both marks. Many candidates though embarked upon half a page or more of algebraic manipulation to no avail - this part was only worth marks and a little thought may have helped them realise that such an approach was unlikely to be the correct one. Question In part (a) most integrated correctly although the fractional power caused a few problems: 5 some thought 5 and obtained 0 whilst others divided by instead of. The +c was usually included and = 4 was often substituted but sometimes the epression was set equal to 0 rather than 5. In part (b) the majority attempted to find the gradient using f and most went on to find the equation of a tangent although some had mistakes with the arithmetic. A few found the equation of a normal and a handful still did not know how to find the gradient of the tangent and used one of the coefficients from the given epression or their integration in part (a). Bronze 4: 4/

Statistics for C Practice Paper Bronze Level B4 Qu Ma score Modal score Mean % ALL A* A B C D E U 90.80.95.9.87.84.78.44 6 87 5. 5.9 5.74 5.49 5.5 4.96.75 6 8 4.84 5.7 5.5 5.9 4.95 4.45.99 4 6 88 5.6 5.98 5.96 5.88 5.79 5.60 5.4 4.00 5 6 80 4.8 5.94 5.7 5.5 5. 4.7.4 6 6 77 4.6 5.8 5.4 5. 4.6 4.09.05 7 5 80 4.00 4.97 4.9 4.8 4.6 4..74.6 8 7 67 4.68 6.8 6.6 5.87 5. 4.40.64.8 9 7 9.4.5.69 0.75 9.00 7.78 4.9 0 9 67 6.00 8.0 7.08 6.46 5.7 4.87.88 9 6 5.66 8.74 8.9 7.4 6.49 5.4 4.0.79 75 75 56.4 7.68 67.05 6.64 56.6 49.46.8 Bronze 4: 4/