Dusty star-forming galaxies at high redshift (part 5)

Similar documents
Dusty star-forming galaxies at high redshift (part 5)

Spectral Energy Distributions as probes of star formation in the distant Universe

Outline. Continuum Phenomena Interstellar Dust Ionized Gas Synchrotron Radiation. Emission Line Phenomena HII Regions Photo-Dissociation Regions

IRS Spectroscopy of z~2 Galaxies

The History of Star Formation. Mark Dickinson, NOAO

Evolution of Star Formation Activity of Galaxies as seen by Herschel

Dusty star-forming galaxies at high redshift (part 7)

Dust in dwarf galaxies: The case of NGC 4214

SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

Towards a Complete Census of Extreme Starbursts in the Early Universe

Dust. The four letter word in astrophysics. Interstellar Emission

Margherita Talia 2015 A&A, 582, 80 ELG2017. University of Bologna. m g 1

WHAT CAN WE LEARN ABOUT SUBMILLIMETER GALAXIES FROM INTERFEROMETRIC IMAGING? Joshua D. Younger Harvard/CfA

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

Star Formation Indicators

The Far-Infrared Radio Correlation in Galaxies at High Redshifts

The role of massive halos in the cosmic star formation history

The evolution of the Galaxy Stellar Mass Function:

Ultra Luminous Infared Galaxies. Yanling Wu Feb 22 nd,2005

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations

Measuring star formation in galaxies and its evolution. Andrew Hopkins Australian Astronomical Observatory

A Monster at any other Epoch:

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO)

Active Galactic Nuclei SEDs as a function of type and luminosity

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

Chien-Ting Chen! Dartmouth College

Studying Galaxy Evolution with FIRI. A Far-InfraRed Interferometer for ESA. Dimitra Rigopoulou Oxford/RAL-STFC

Extinction law variations and dust excitation in the spiral galaxy NGC 300

Multi-wavelength ISM diagnostics in high redshift galaxies

Star formation history in high redshift radio galaxies

High-redshift galaxies

The bolometric output of AGN in the XMM-COSMOS survey

Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer

THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED

Revision of Galaxy SEDs with New Stellar Models

The Interstellar Medium

The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD

GOODS-Herschel: an IR main sequence for star forming galaxies! from the Main Sequence to starbursts and obscured AGNs

Probing the Chemistry of Luminous IR Galaxies

Survey of dusty AGNs based on the mid-infrared all-sky survey catalog. Shinki Oyabu (Nagoya University) & MSAGN team

Extragalactic Surveys: Prospects from Herschel-PACS

Dust and mid-ir properties of Interacting Galaxies and AGN

Exploring star formation in cluster galaxies. the Herschel Space Observatory. Tim Rawle. Steward Observatory, University of Arizona

Chris Pearson: RAL Space. Chris Pearson: April

arxiv:astro-ph/ v1 5 Nov 2003

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

STAR FORMATION RATES observational overview. Ulrike Kuchner

arxiv: v2 [astro-ph.ga] 1 Jun 2017

SED models of AGN. R. Siebenmorgen and A. Efstathiou

Dust attenuation in the Universe: what do we know about its variation with redshift and from galaxy to galaxy

Gas Masses and Gas Fractions: Applications of the Kennicutt- Schmidt Law at High Redshift

The Spitzer Infrared Nearby Galaxies Survey: A Review

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

arxiv: v1 [astro-ph.ga] 10 Dec 2014 Received...;Accepted

Understanding Submillimetre Galaxies: Lessons from Low Redshifts

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Luminous Infrared Galaxies

The Formation and Evolution of the Cold Gas Component and the Baryonic Mass Build-up History in Galaxies

How to measure star formation rates in galaxies?

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

Dust processing of radiation in galaxies

Combining physical galaxy models with radio observations to constrain the SFRs of high-z dusty star-forming galaxies

David T. Frayer (NRAO-GB), A. Harris, A. Baker, M. Negrello, R. Ivison, I. Smail, M. Swinbank, D. Windemuth, S. Stierwalt, H-ATLAS and GOALS Teams

arxiv: v1 [astro-ph.co] 27 May 2009

Massively Star-Forming Dusty Galaxies. Len Cowie JCMT Users Meeting

The Infrared Universe as Seen by Spitzer and Beyond. February 20, 2007

20x increase from z = 0 to 2!

The main sequence from stars to galaxies pc kpc Mpc. Questions

The Interstellar Medium in Galaxies: SOFIA Science

The link between SCUBA and Spitzer: cold galaxies at z 1

The ALMA z=4 Survey (AR4S)

Cirrus models for local and high-z SCUBA galaxies

X name "The talk" Infrared

AKARI-NEP : EFFECTS OF AGN PRESENCE ON SFR ESTIMATES OF GALAXIES

INVESTIGATING Hα, UV, AND IR STAR-FORMATION RATE DIAGNOSTICS FOR A LARGE SAMPLE OF z 2 GALAXIES

Beyond the Visible -- Exploring the Infrared Universe

Survey of dusty AGNs based on the mid-infrared all-sky survey catalog

Stellar Populations: Resolved vs. unresolved

Star forming galaxies at high redshift: news from Herschel

Lecture 10. (1) Radio star formation rates. Galaxy mass assembly history

X-ray emission from star-forming galaxies

arxiv: v1 [astro-ph.ga] 16 Oct 2018

The Infrared Properties of Sources in the H-ATLAS and WISE Surveys

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

Far-infrared surveys of galaxy evolution

Components of Galaxies Gas The Importance of Gas

A TALE OF TWO MONSTERS: EMBEDDED AGN IN NGC6418 AND IRAS

FIRSED 2013: Nearby Galaxies

Starburst Galaxies in the Early Universe

44 JAXA Special Publication JAXA-SP E Lutz Figure 2. The cosmic far-infrared background as seen by direct measurements and as resolved by Hersch

Interstellar Dust and Extinction

Extragalactic Astronomy

Andromeda in all colours

The Cornell Atlas of Spitzer Spectra (CASSIS) and recent advances in the extraction of complex sources

Sunrise: Patrik Jonsson. Panchromatic SED Models of Simulated Galaxies. Lecture 2: Working with Sunrise. Harvard-Smithsonian Center for Astrophysics

HIGH REDSHIFT OBJECTS. Alain Omont (IAP)

1. The AGB dust budget in nearby galaxies

Transcription:

Dusty star-forming galaxies at high redshift (part 5) Flow of story 4.1 4.2 4.3 Acquiring Spectroscopic or Photometric Redshifts Infrared SED Fitting for DSFGs Estimating L IR, T dust and M dust from an SED 1

Infrared SED Fitting for DSFGs FIR SED fitting dust emission infrared luminosity obscured star formation rate dust temperature and dust mass template libraries scaling relations direct data fitting, parametrized fits Infrared SED Fitting for DSFGs FIR SED fitting photometric data model FIR emission dust distribution composition dust grain type orientation galaxy structure band parameter AGN heating emissivity and optical depth etc 2

Infrared SED Fitting for DSFGs FIR SED fitting CO, CII emission line broadband submm flux densities 20-40 % contaminate SED fitting techniques direct comparison to models using Bayesian techniques modified black body functions stellar emission dust emission fit Flow of story 4.2.1 Employing dust radiative transfer models and empirical templates 4.2.2 Direct modified blackbody SED modeling 3

Employing dust radiative transfer models and empirical templates geometry luminosity dust infrared emission modeling accuracy applicability geometry distribution, optical depth high-z dusty starbursts SED fitting Employing dust radiative transfer models and empirical templates Silva et al. 1998 UV FIR / stellar population synthesis models code age metalicity SFR gas fraction integrated spectra dust geometry chemical evolution dust grain size distribution relative gas trapped in MC versus diffuse ISM 4

Employing dust radiative transfer models and empirical templates Chary & Elbaz 2001 Silva et al. 1998 z ~ 1 infrared-luminous galaxies SED population CIB mid-ir ISOCAM data 4 (Arp 220, NGC 6090, M82, M51) SED 20 μm Dale et al. 2001 Employing dust radiative transfer models and empirical templates Dale et al. 1998 dust emission curves dust mass distribution power-law SED @ FIR small, large, PAH grains 69 data normal galaxies S 60 /S 100 Dale & Helou 2002 Dale et al. 1998 >120 μm 5

Employing dust radiative transfer models and empirical templates Dopita et al. 2005 UV FIR, radio SED STARBURST99 (Leitherer & Heckman 1995) model nebular line emission model dynamic evolution model of HII regions simplified synchrotron emissivity model stellar population synthesis model solar-metalicity starburst self-consistent SED FIR emission starburst ambient pressure Employing dust radiative transfer models and empirical templates Chary & Elbaz 2001 Dale & Halou 2002 template mid-ir detect FIR luminosity data model 6

Employing dust radiative transfer models and empirical templates Siebenmorgen & Krügel 2007 dusty starburst nuclei and ULIRGs dust clumpiness asymmetry model local or high-z galaxies 7000 template SEDs Draine & Li 2007 mid-ir dust emission Spitzer data Employing dust radiative transfer models and empirical templates Rieke et al. 2009 11 Spitzer local (U)LIRGs data 0.4 μm 30 cm, 5 10 9 10 13 L template 35 μm IRS ISO spectrum 0.4 μm - 5 μm stellar photospheric template redshift consistent FIR 38 64 K modified black body (β = 0.7 ~ 1) 7

Employing dust radiative transfer models and empirical templates Bayesian fitting CIGALE (Code Investigating GALaxy Emission) optical/nir model spectra thermally pulsating AGB (TP-AGB) stars modified laws FIR SED templates (Dale & Helou 2002) synthetic dust attenuation curves Employing dust radiative transfer models and empirical templates Bayesian fitting MAGPHYS (Multi-wavelength Analysis of Galaxy PHYSical properties) energy balance argument UV FIR IR SED <- hot grains, PAHs, grains in thermal equilibrium stellar component <- stellar population synthesis, attenuated spectrum da Cunha et al. 2008 8

Flow of story 4.2.1 Employing dust radiative transfer models and empirical templates 4.2.2 Direct modified blackbody SED modeling Direct modified blackbody SED modeling modified blackbody model 850 μm SMGs flux density -> L FIR or SFR modified black body local ULIRG SED template 850 μm flux density 3.5 S 850 L FIR T dust (z = 0 ~ 2) 9

Direct modified blackbody SED modeling modified blackbody model FIR/radio correlation radio FIR modified black body high-z (Ivison et al, 2010a, b) L IR FIR data fit SED modified black body 850 μm SMGs -> selection effect Direct modified blackbody SED modeling modified blackbody model Herschel PACS SPIRE FIR band data radio luminosity black body galaxies temperature variation dust emissivity variation in opacity S ν (T) 1 e τ ν B ν (T) assumed dust temperature 10

Direct modified blackbody SED modeling modified blackbody model Herschel PACS SPIRE FIR band data τ ν = Σ dust κ ν = ν/ν 0 β (ν 0 = 1.5 3 THz) κ ν = κ 0 ν/ν 0 β emissivity index β unresolved distant DSFGs DSFG 450 μm optically-thin Direct modified blackbody SED modeling modified blackbody model Rayleigh-Jeans regime Wien regime rest-frame 8-50 μm hot dust small clump modified black body mid-ir flux density excess heating optically-thin medium (Scoville & Kwan, 1976) 11

Direct modified blackbody SED modeling modified blackbody model two component model 2 modified black body fit colder component longer-wavelength dominant warmer component mid-ir excess 10 high-z galaxies two component model unconstrained parameter normalization, emissivity) (dust temperature, Direct modified blackbody SED modeling modified blackbody model other methods longer wavelength modified black body fit shorter wavelength power-law fit 12

Direct modified blackbody SED modeling modified blackbody model other methods SED modified black body power-law T c : most massive dust Direct modified blackbody SED modeling modified blackbody model other methods power-law analytical approximation N bb, N pl : normalization factor ( free parameter) 13

Direct modified blackbody SED modeling modified blackbody model 2009 single temperature modified black body fit cold-dust modified black body + mid-ir powerlaw 3 fitting fitting method (Kelly et al., 2012) Flow of story 4.3 4.4 4.5 Estimating L IR, T dust and M dust from an SED Luminosity Functions Contribution to Cosmic Star Formation Rate Density 14

Estimating L IR, T dust and M dust from an SED infrared luminosity from SED SED infrared 8-1000 μm (Kennicutt, 1998a) cold diffuse dust, hot dust, PAH, AGN heating emission AGN heating 40-120 μm rest-frame 40 μm 40-1000 μm 8-1000 μm Estimating L IR, T dust and M dust from an SED SFR from SED L IR SFR dust compsition IMF (Initial Mass Function) (cf. Bastian et al. 2010) Kennicutt 1998a Leither & Heckman 1995 radiative transfer model Salpeter 1995 IMF AGN heating 15

Estimating L IR, T dust and M dust from an SED SFR from SED Swinbank et al. 2008 Chabrier 2003 IMF Salpeter 1955 IMF factor 1.8 SFR local moderate-luminosity star-forming galaxies high-z extreme systems dust-heating source Estimating L IR, T dust and M dust from an SED T dust, M dust and β from SED T dust 1 T dust λ peak λ peak T dust model assumption dust opacity dominant emissivity index dust temperature 16

Estimating L IR, T dust and M dust from an SED T dust, M dust and β from SED T dust Fig 20. T dust λ peak Estimating L IR, T dust and M dust from an SED T dust, M dust and β from SED M dust SED R-J regime (S ν τb ν (T)) S ν = κ ν B ν T M dust D L 2 optically-thin approximation -> L ν S ν /B ν (T) ν 2 350 μm optically-thin dust temperature dust mass (Draine & Li 2007) dust absorption coefficient dust mass 17

Estimating L IR, T dust and M dust from an SED T dust, M dust and β from SED M dust dust mass, dust temperature, flux density, IR luminosity 1 M dust S ν T dust (4+β) M dust L IR T dust dust mass gas-to-dust ratio gas mass gas-to-dust ratio Milky way local (U)LIRGs CO(1-0) observations -> gas-to-dust ratio = ~100 Flow of story 4.3 Estimating L IR, T dust and M dust from an SED 4.4 4.5 Luminosity Functions Contribution to Cosmic Star Formation Rate Density 18

Luminosity Functions luminosity function SED fitting redshift z = 2 ~ 3 selection effect potential biasing incompleteness band luminosity functions Luminosity Functions luminosity function Le Floc h et al 2005 Spitzer 24 μm data z ~ 1 integrated IR luminosity function 24 μm data -> integrated infrared luminosity local scalings existing knowledge of mid-ir spectral features and their impact on 24 μm flux with redshift 19

Luminosity Functions luminosity function 1 / Vmax method z min, zmax : source detect min/max redshift high-z flux density source Caputi et al. 2007, Magnelli et al. 2011 AKARI consistent (Goto et al. 2010) Luminosity Functions luminosity function Herschel IR emission peak Spitzer PACS SPIRE z ~ 3.6 luminosity functions 20

Luminosity Functions luminosity function Fig. 21 integrated luminosity function Luminosity Functions luminosity function Fig. 21 integrated luminosity function 21

Luminosity Functions luminosity function analytic approximation Schechter function double power-law local free parameter α σ 2 parameter L redshift (α σ ) high-l and low-φ fits -> low-l and high-φ fits Luminosity Functions luminosity function analytic approximation Fig. 21 L and Φ evolution with redshift 22

Flow of story 4.3 4.4 4.5 Estimating L IR, T dust and M dust from an SED Luminosity Functions Contribution to Cosmic Star Formation Rate Density Contribution to Cosmic Star Formation Rate Density star formation rate density (SFRD) star formation IR galaxies high-z SFRD dust obscuration IR luminosity function luminosity function accessible volume 1 / Vmax method 23

Contribution to Cosmic Star Formation Rate Density infrared luminosity density (IRLD) L IR -> SFR survey depth area coverage IRLD (SFRD) IR luminosity (SFR) volume Lilly-Madau diagram (Lilly et al. 1995, Madau et al. 1996) SFRD, redshift (or look-back time) plot Contribution to Cosmic Star Formation Rate Density Lilly-Madau diagram (Lilly et al. 1995, Madau et al. 1996) Fig 23. SFRD (IRLD) redshift 24

Contribution to Cosmic Star Formation Rate Density Lilly-Madau diagram (Lilly et al. 1995, Madau et al. 1996) Fig 24. SFRD (IRLD) redshift Contribution to Cosmic Star Formation Rate Density Lilly-Madau diagram (Lilly et al. 1995, Madau et al. 1996) Fig. 23 incompleteness bias sample net contribution Chapman et l. 850 μm-selected galaxies -> 10% Fig. 24 population incompleteness equal luminosity 25

Contribution to Cosmic Star Formation Rate Density Lilly-Madau diagram (Lilly et al. 1995, Madau et al. 1996) ULIRG (e.g. Le Floc h et al. 2005) dominant z ~ 1 ~10 %, z ~ 2 ~50 % LIRG z ~ 1 peak ~50 % optical/rest-frame UV high-z SFRD dust-obscured star-formation 26