E-ELT s View of Exoplanetary Atmospheres

Similar documents
Exoplanets at the E-ELT era

Exoplanetary Science with the E-ELT

A New Era with E-ELT Drivers for circumstellar environment studies

Exoplanet Science with E-ELT/METIS

Synergies between E-ELT and space instrumentation for extrasolar planet science

Exoplanet atmosphere Spectroscopy present observations and expectations for the ELT

Direct imaging characterisation of (exo-) planets with METIS

Prospects for ground-based characterization of Proxima Centauri b

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA)

CHARACTERIZING EXOPLANETS SATELLITE

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT

The Fast Spin of β Pic b

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18

Red dwarfs and the nearest terrestrial planets

Science of extrasolar Planets A focused update

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Exoplanet atmospheres

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Instrumentation for The European Extremely Large Telescope Science and Technology with E-ELT Erice, October 2015

SPICA Science for Transiting Planetary Systems

Jean- Luc Beuzit and David Mouillet

Science with EPICS, the E-ELT planet finder

EPICS: A planet hunter for the European ELT

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2

Transmission spectra of exoplanet atmospheres

Finding bio-signatures on extrasolar planets, how close are we?

2 More Science Cases, Summary & Close

Adam Burrows, Princeton April 7, KITP Public Lecture

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration

Ongoing and upcoming observations and their implication for exoplanet and brown dwarf studies.

Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ)

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanet Atmospheres Observations. Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics

Exo-Planetary atmospheres and host stars. G. Micela INAF Osservatorio Astronomico di Palermo

Exoplanet Science in the 2020s

Looking to the Future: the rest of the planets

Preparing staff for ELT science operations activities

Detection and characterization of exoplanets from space

Direct imaging and characterization of habitable planets with Colossus

Revealing the evolution of disks at au from high-resolution IR spectroscopy

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

What will the future bring? Scientific discoveries expected from the E-ELT

Exoplanets in the mid-ir with E-ELT & METIS

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

The Austrian contribution to the European Extremely Large Telescope

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

Design Reference Mission. DRM approach

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Instruments for ESO s Extremely Large Telescope

A dozen years of hot exoplanet atmospheric investigations. Results from a large HST program. David K. Sing. #acrosshr Cambridge.

Searching for Other Worlds: The Methods

Transit Spectroscopy Jacob Bean

MIRI, METIS and the exoplanets. P.O. Lagage CEA Saclay

II Planet Finding.

Characterization of Exoplanets in the mid-ir with JWST & ELTs

The Large UV Optical IR survey telescope. Debra Fischer

Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST

E-ELT S VIEW OF CIRCUMSTELLAR ENVIRONMENTS

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs

Proxima Cen b: theoretical spectral signatures for different atmospheric scenarios

Overall science goals and top level AO requirements for the E-ELT

A Gigan2c Step into the Deep Universe

Scientific context in 2025+

Atmospheric Dynamics of Exoplanets: Status and Opportunities

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

Synergies between and E-ELT

Observations of Extrasolar Planets

Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk)

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST

Direction - Conférence. The European Extremely Large Telescope

Notes on Third Meeting of NGAO Solar System, February 28, 2006

Internal structure and atmospheres of planets

Highlights of the program of. The European Southern Observatory

Perspectives for Future Groundbased Telescopes. Astronomy

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Direct Imaging of Exoplanets

CASE/ARIEL & FINESSE Briefing

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Characterising Exoplanet Atmospheres with High- resolution Spectroscopy

Characterizing Exoplanets and Brown Dwarfs With JWST

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey

The Future of Exoplanet Science from Space

Exoplanet science with ground based ELTs

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

A high-multiplex (and high-definition) MOS for the E-ELT. Lex Kaper, Univ.of Amsterdam (on behalf of the MOSAIC team)

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report

A red / near-ir Spectrograph for GTC NEREA (Near Earths and high-res Exoplanet Atmospheres)

ESO: Status and perspectives

Direct imaging of extra-solar planets

Planets are plentiful

Exoplanets in Ondrejov ground based support of space missions first results Petr Kabáth ING, La Palma 05 September 2018

The E-ELT Telescope, instruments, technology. Mark Casali

EPICS, the exoplanet imager for the E-ELT

SCIENCE WITH. HARMONI A near-infrared & visible integral field spectrograph for the E-ELT. Niranjan Thatte University of Oxford

Astrophysical false alarms in high contrast imaging surveys

Exoplanet High Contrast Imaging Technologies Ground

The Thousand Parsec Open Cluster Survey establishing new benchmarks for star and planet evolu7on

Transcription:

Exo-Abundances Workshop, May 12th 14th, Grenoble E-ELT s View of Exoplanetary Atmospheres Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium

Outline Exoplanets with the E-ELT I- The E-ELT project Telescope, Discovery Window, Other Projects Instrumentation Roadmap II- Exoplanetary atmospheres 1. MOS transit spectroscopy 2. High-dispersed spectroscopy 3. High-contrast spectroscopy

The E-ELT Project The Telescope 40-m class telescope: largest opticalinfrared telescope in the world. (GMT = 25m; TMT = 30m) Segmented primary mirror. Adaptive optics assisted telescope. Diffraction limited performance: 12mas@K-band Wide field of view: 7arcmin. Mid-latitude site (Amazones/Chile). Fast instrument changes. VLT level of operations efficiency.

The E-ELT Project E-ELT & other competitive projects Discoveries by opening a new parameter space Increased Sensitivity Spatial resolution (10 mas scale) 50m2 400m2 600m2 1200m2 (JWST: 25m2) 2 µm 50mas 18mas 14mas 10mas (JWST: 68mas)

The E-ELT Project Timeline: current/future missions 2012 2014 2016 2018 2020 2022 2024 2026 2028 Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP Space: Spitzer, Herschel, Kepler, CoRoT - VLT & VLTI 2 nd & 3 rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY, MATISSE, ERIS - ALMA (ACA) - GAIA - Cheops - TESS - SKA - JWST - PLATO, FINESS? - TMT - GMT - E-ELT

The E-ELT Project Instrument Roadmap instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode MCAO LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40mas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project instrument Roadmap 1st Light instruments instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode MCAO LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40mas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project instrument Roadmap 2 nd Pool instruments instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode MCAO LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40mas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project instrument Roadmap XAO instrument instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode MCAO LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40mas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project instrument Roadmap Various AO Flavors instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode MCAO LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40mas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

The E-ELT Project instrument Roadmap Science Priority / Exoplanetary Atmospheres instruments - First Light E-CAM 2023 E-IFU 2023 AO Mode λ (µm) Resolution FoV / Sampling Add. Mode MCAO LTAO - IMG - MRS 0.8 2.4 BB, NB 3000 - IFU 0.5 2.4 4000 10 000 20 000 53.0 / 3 mas Astrometry 40mas 0.5 1.0 / 4mas 5.0 10.0 / 40mas E-MIDIR 2024/2028 LTAO - IMG - MRS - IFU 3 13 3-13 3-5 BB, NB 5000 100 000 18 / 12 mas 0.4 1.5 / 4 mas E-HIRES - 2024/2028 SCAO - HRS 0.37 0.71 0.84 2.50 200 000 120 000 0.82 0.027 0.5 E-MOS - 2024/2028 MOAO Slits IFUs IFUs 0.37 1.4 0.37 1.4 0.8 2.45 300-2500 5000 30 000 4000 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAO EPOL IFS 0.6 0.9 0.95 1.65 125 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Low Medium High

Outline Exoplanets with the E-ELT I- The E-ELT project Telescope, Discovery Window, Other Projects instrumentation Roadmap II- Exoplanetary atmospheres 1. MOS transit spectroscopy (transmission MRS) 2. High-dispersed spectroscopy (HDS) 3. High-contrast spectroscopy (HCS)

State-of-art Exoplanets Detection

State-of-art Exoplanets characterization Strongly Irradiated planets 1. Transit LRS/MRS 2. HDS Self-luminous planets 3. HCS

E-ELT Science Cases 1. MOS Transit spectroscopy E-ELT MOS, MOSAIC consortium Evans et al. 2013, White paper, arxiv1303.0029 Patrol field = 7 Spectral range = 0.4 2.45 µm Resolution = 4000 30 000 High multiplex mode (N> 100) High definition mode (MOAO, 90 mas) ESO Top-Level-Requirements (TLRs): Transmission spectroscopy of Super-Earths Use of several reference stars (10 th mag) Targets: M dwarfs (Habitability) Photometric accuracy = 10-5 (Goal 10-6) Search for bio-signatures (O2, O3, CH4, CO2 )

E-ELT Science Cases 1. MOS Transit spectroscopy GJ3470b a new ~800 K, low-density ice giant (discovered at IPAG!) MOS Transmission spectroscopy Keck/MOSFIRE FoV = 6 x 6 ; Reference stars Spectral range= 2.0 2.4 µm Resolution = 3500 (OH lines) 10-4 photometric precision Crossfield et al. 2013

E-ELT Science Cases 1. MOS Transit spectroscopy GJ3470b a new ~800 K, low-density ice giant (discovered at IPAG!) Crossfield et al. 13; Fukui et al. 13; Demory et al. 13; Ehrenreich et al. 14 GJ3470b's transmission spectrum looks flat! Suggests hazes and/or disequilibrium chemistry

E-ELT Science Cases E-ELT HIRES, Maiolino et al. 13, White paper, Seeing-limited (SCAO? IFU?) Slit-spectroscopy; FoV < 0.8 Spectral range = 0.4 2.45 µm Resolution = 120 000 200 000 2. High-dispersed spectroscopy ESO TLRs: Dayside/Transmission HDS of Giant, icy to telluric planets Molecules: CO, CO2, H2O, CH4, even O2 (0.76 and 1.27 µm) Line contrast of 10-5

E-ELT Science Cases 2. High-dispersed spectroscopy E-ELT MIDIR, Brandl et al. 12, SPIE, 8446, 1 SCAO in VIS or NIR IMG: Spectral range = 2.9 13 µm slit-spectroscopy Resolution = 4000 IFU: Spectral range = 2.9 5.5 µm Resolution = 100 000 ESO TLRs: Dayside/Transmission HDS of Giant & icy planets Molecules: CO, CO2, CH4, H2O, NH3 can be probed btw 2.9 and 5.4 µm

E-ELT Science Cases HD209458b Hot Jupiter, Teq ~ 1300K 0.64 M Jup, P = 3.4 days VLT/CRIRES observations Resolution = 100 000 Spectral coverage = 2.29-2.35 µm Absorption lines from CO at 2.3 µm seen In transmission. Orbital motion, absolute mass and high-altitude winds observed Snellen et al. 10 2. High-dispersed spectroscopy

E-ELT Science Cases Non-transiting planets Dayside of the planet seen in CO, H2O VLT/CRIRES observations Resolution = 100 000 Spectral coverage = 2.29-2.35 µm Systems: 51 Peg, Brogi et al. 13; Boo, Brogi et al. 12 HD179949, Brogi et al. 14 Results: CO, H20 molecular detections Mass, inclination Bulk atmospheric thermal structure Atmospheric circulation, phase curves, C/O ratios 2. High-dispersed spectroscopy

E-ELT Science Cases 2. High-dispersed spectroscopy Non-transiting planets (dayside spectroscopy) Brogi et al.,

E-ELT Science Cases 2. High-dispersed spectroscopy Finding extraterrestrial life (Snellen et al. 13) Simulated O2 transmission signal for an Earth-twin transiting an M5 dwarf star. Signal 2-3 lower than the CO signal detected by Brogi et al. (2012). challenge comes from the expected faintness of the nearest late M-dwarf with a transiting Earth-twin >> need to cumulate several transits

E-ELT Science Cases E-ELT PCS, Kasper et al. Proc. SPIE arxiv:1207.0768 SPHERE-like concept (Phase A) 1. XAO: Atmospheric turbulence 2. Diffraction Pattern 3. Quasi-static instrumental aberrations NIR IFS: 950-1650 nm, 0.8 FoV, 2.33 mas/px R = 125, 1400, 20.000 EPOL: Vis IMG: 600-900 nm, 2 FoV, 1.5 mas/px Vis polarimetry Prelim. ESO TLRs: LRS/MRS of giant, icy and telluric planets in reflected/emitted light >> 10-9 contrast required for super-earths imaging 3. High-Contrast spectroscopy

E-ELT Science Cases 3. High-Contrast «Low-Res» spectroscopy Beta Pic b 8 13 M Jup planet, 9 AU; T eff = 1650 +- 150K, log(g) = 4.0±0.5 and R = 1.3+-0.2 R jup (Bonnefoy et al. 13) >> Access the broad molecular absorptions (here H2O) GPI IFS observations in J-band, Res = 50 Bonnefoy et al. 14

E-ELT Science Cases 3. High-Contrast «High-Res» spectroscopy Beta Pic b VLT/CRIRES, Res. = 100 000; 2.303-2.331 µm CO line at 2.3µm spatially resolved; Rotational broadening of 25+-3 km/sec Planet rotation of 8.1+-0.1 hrs Snellen et al. 14, arxiv:1404.7506

E-ELT Science Cases 3. High-Contrast «High-Res» spectroscopy Luhman 16 AB, Cloud Mapping VLT/CRIRES, Res = 100 000, 2.288 2.345 µm, CO and H2O lines Luhman 16 B, 2 pc, Rotation 4.9hrs spectroscopic variability Doppler imaging Crossfield et al. 14

E-ELT Science Cases 3. High-Contrast «High-Res» spectroscopy Luhman 16 AB, Cloud Mapping VLT/CRIRES, Res = 100 000, 2.288 2.345 µm, CO and H2O lines Luhman 16 B, 2 pc, Rotation 4.9hrs spectroscopic variability Doppler imaging Crossfield et al. 14 Exciting perspectives: - E-MIDIR and new PCS concept? - Molecules: CO, CH4, H2O, NH3 Cloud mapping of various species Atmospheric circulation & winds

E-ELT Science Cases 3. High-Contrast «High-Res» spectroscopy Ultimate perspective: XAO + HDS Combining HDS + HCS to probe Earth-like planets with the E-ELT Powerful technique, capable to characterize rocky planets in HZ? >> Reflected light (10-9 contrast)

Conclusions Exoplanetology with the EELT 2024, a rich context for exoplanets (HARPS N/S, SPHERE, GPI, GAIA, Cheops, ESPRESSO, JWST...) 10 4 planetary systems (< 200 pc) in astrometry Population of wide orbit planets probed by SPHERE, GPI E-ELT, a machine for exoplanet s characterization (Atmospheres) Main techniques/instruments: MRS Transmission spectroscopy (E-MOS) Goal of 10-6 photom. accurracy for bio-signatures around M dwarfs HDS in Transmission/Dayside of Giant, icy to telluric planets (E- HIRES, E-MIDIR); 10-5 contrast for O2 (1.26um) HCS of reflected lights of Giant (to super Earths, 10-9) (PCS) >> HCS(XAO) + HDS: powerful technique for reaching 10-9 contrast for detection of bio-signatures (PCS, MIDIR )