Aromatic Hydrocarbons / Arenes

Similar documents
Aromatic Hydrocarbons / Arenes

Theoretically because there are 3 double bonds one might expect the amount of energy to be 3 times as much.

6.1.1 Aromatic Compounds

3.10 Benzene : Aromatic Hydrocarbons / Arenes

Plymstock School. Arenes. P.J.McCormack

Arenes occur naturally in many substances, and are present in coal and crude oil. Aspirin, for example, is an aromatic compound, an arene: HO

Q.1 Draw out suitable structures which fit the molecular formula C 6 H 6

17 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2

Chapter 17. Reactions of Aromatic Compounds

18.1 Arenes benzene compounds Answers to Exam practice questions

Chapter 5. Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds

Organic Mechanisms 1

Benzenes & Aromatic Compounds

Chem!stry. The Chemistry of Benzene C 6H 6 Macroconcept Models

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds

Option G: Further organic chemistry (15/22 hours)

4. AROMATIC COMPOUNDS

Aromatic Compounds II

Chapter 15 Reactions of Aromatic Compounds

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

7 Benzene and aromatic compounds Answers

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

6.10 Amines. Naming. N Goalby chemrevise.org 1 CH2 CH2

BENZENE AND AROMATIC COMPOUNDS

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

William H. Brown & Christopher S. Foote

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

AROMATIC CHEMISTRY BENZENE

H H O C C O H Carboxylic Acids and Derivatives C CH 2 C. N Goalby chemrevise.org. Strength of carboxylic acids.

The mechanism of the nitration of methylbenzene is an electrophilic substitution.

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

Alkenes CnH2n Ethene Propene But-2-ene But-1-ene exposed high electron density one sigma (σ) bond and one pi (π) bond.

ZAHID IQBAL WARRAICH

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

Acid Anhydrides CH3 C. ethanoic anhydride.

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

Chemistry of Benzene: Electrophilic Aromatic Substitution

Class XI Chapter 13 Hydrocarbons Chemistry

Chemistry 204: Benzene and Aromaticity

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Benzene and Aromatic Compounds

Electrophilic Aromatic Substitution

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

N.b. A catalyst is a species which speeds up a chemical reaction but which remains chemically unchanged. Reverse process of dehydration of an alcohol

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Organic Chemistry SL IB CHEMISTRY SL

QUESTIONSHEET 1. ELECTROPHILIC SUBSTITUTION I (Nitration)

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin.

Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds

dihalogenoalkane H 2, Nickel Catalyst addition/reduction HBr, HCl room temp KOH alcoholic heat under reflux Elimination

Carbonyls. Aldehydes and Ketones N Goalby chemrevise.org. chemrevise.org

IGNORE Just benzene has a delocalised ring Benzene does not have C=C double bonds Any references to shape/ bond angles. Acceptable Answers Reject Mark

Name/CG: 2012 Term 2 Organic Chemistry Revision (Session II) Deductive Question

F324: Rings, Polymers and Analysis Arenes

Module III: Aromatic Hydrocarbons (6 hrs)

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

Fundamentals of Organic Chemistry

Ch 16 Electrophilic Aromatic Substitution

Alkanes are aliphatic saturated hydrocarbons (no C=C double bonds, C and H atoms only). They are identified by having a ane name ending.

dihalogenoalkane H 2, KOH alcoholic heat under reflux Elimination PCl 5, PBr 3, PI 3 Heat under reflux substitution KOH aqueous heat under reflux

Deduce the following information from the structure of estradiol, a phenol contain compound.

240 Chem. Aromatic Compounds. Chapter 6

18: Organic Chemistry III 18A. Arenes

Reactions of Haloalkanes

General formula is CnH2n. Propene. But-1-ene. C-C pi bond. Formation of π bond in alkenes p orbitals Rotation can occur around a sigma bond

Organic Chemistry Review: Topic 10 & Topic 20

ALKENES. select the longest chain of C atoms containing the double bond; end in ENE

Unit 7 Part 3 Introduction to Organic Chemistry Simple Reactions of Hydrocarbons UNIT 7 INTRODUCTION TO ORGANIC CHEMISTRY

A LEVEL CHEMISTRY TOPIC 18 AROMATIC CHEMISTRY TEST

BENZENE & AROMATIC COMPOUNDS

Where circles have been placed round charges, this is for clarity only and does not indicate a requirement. ALLOW delocalised carboxylate.

4.1.3 Alkenes. N Goalby chemrevise.org. Formation of π bond p orbitals C C C C. Alkenes contain a carboncarbon. General formula is CnH2n

Chapter 17: Reactions of Aromatic Compounds

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

1.3 Reactions of Hydrocarbons

Organic Chemistry. February 18, 2014

I5 ELECTROPHILIC SUBSTITUTIONS OF

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution

ammonia primary amine secondary amine tertiary amine quaternary ammonium salt (NOT amines) H CH 3 CH 3 CH 2

Learning Guide for Chapter 18 - Aromatic Compounds II

Aryl Halides. Structure

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6

Chemical tests to distinguish carbonyl compounds

Transcription:

Aromatic ydrocarbons / Arenes There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six carbon atoms with delocalised bonding. The simplest arene is benzene. Benzene has the molecular formula 6 6 In 1865 Kekule suggested the following structure for Benzene consisting of alternate single and double covalent bonds between the carbon atoms Skeletal formula showing Kekule structure Displayed formula showing Kekule structure This structure is not correct. Evidence suggests that all the bonds are the same. Benzene s Delocalised Structure Benzene s basic structure is six carbon atoms in a hexagonal ring, with one hydrogen atom bonded to each carbon atom. Each carbon atom is bonded to two other carbon atoms and one hydrogen atom by single covalent σbonds. This leaves one unused electron on each carbon atom in a p orbital, perpendicular to the plane of the ring. The six p electrons are delocalised in a ring structure above and below the plane of carbon atoms. The six electrons in the π bonds are delocalised and spread out over the whole ring. Delocalised means not attached to a particular atom. Delocalisation makes the molecule more energetically stable Benzene is a planar molecule. The evidence suggests all the bonds are the same and have a length and bond energy between a single and = double bond. The bonds length are all the same at 0.14nm (half way between and =). In formulae we draw a circle to show this delocalised system. The bond angle is 120 o in Benzene Skeletal formula Displayed formula N Goalby chemrevise.org 1

Using Enthalpies of ydrogenation to show Thermodynamic Stability cyclohexene 2 3 2 Non delocalised structure delocalised structure 3 2 cyclohexane = 120 kj/mol x3 = 360 kj/mol = 208kJ/mol Theoretically because there are 3 double bonds in the theoretical cyclohexa1,3,5triene one might expect the amount of energy to be 3 times as much as cyclohexene. owever, in actual benzene the amount of energy is less. The 6 pi electrons are delocalised and not arranged in 3 double bonds The increase in stability connected to delocalisation is called the delocalisation energy. enthalpy 360 kj/mol Theoretical value = 152kJ/mol delocalisation energy = 208kJ/mol actual value This when represented on an energy level diagram shows that the delocalised benzene is more thermodynamically stable than the theoretical structure. In cyclohexa1,3diene, there would be some delocalisation and extra stability as the pi electrons are close together, in the same plane and so overlap. The hydrogenation value would be less negative than 240 kj/mol (showing more stable) In cyclohexa1,4diene, there would not be delocalisation as the pi electrons are too far apart and so don t overlap. The hydrogenation value would be 240 kj/mol Toxicity of Benzene Benzene is a carcinogen (cancers causing molecule) and is banned for use in schools. Methylbenzene is less toxic and also reacts more readily than benzene as the methyl side group releases electrons into the delocalised system making it more attractive to electrophiles N Goalby chemrevise.org 2

Naming aromatic molecules Naming aromatic compounds can be complicated. The simplest molecules are derivatives of benzene and have benzene at the root of the name 3 2 5 l Br 2 Methylbenzene ethylbenzene chlorobenzene bromobenzene nitrobenzene benzenecarboxylic acid benzaldehyde If two or more substituents are present on the benzene ring, their positions must be indicated by the use of numbers. This should be done to give the lowest possible numbers to the substituents. When two or more different substituents are present, they are listed in alphabetical order and di, tri prefixes should be used. 3 3 2 N 3 3 1,3dimethylbenzene l 1chloro 4methylbenzene 4hydroxybenzenecarboxylic acid 2,4,6trinitromethylbenzene In other molecules the benzene ring can be regarded as a substituent side group on another molecule, like alkyl groups are. The 6 5 group is known as the phenyl group. N 2 2 3 2 3 3 3 phenylamine phenylethene 2phenylbutane phenylethanone phenylethanoate 1phenylpropane1,2diol 3phenylpropanal Reactions of Benzene ombustion Benzene oxygen carbon dioxide water 6 6 (l) 7.5 2 6 2 3 2 0 Benzene will combust with a very sooty flame. The lower the carbon to hydrogen ratio in a hydrocarbon the sootier the flame during combustion. N Goalby chemrevise.org 3

Reactions of Benzene Benzene does not readily undergo addition reactions because these would involve permanently breaking up the delocalised system. Most of benzene s reactions involve substituting one hydrogen for another atom or group of atoms. It reactions are usually electrophilic substitutions. omparison of Benzene with alkenes: reaction with Bromine The delocalised electrons above and below the plane of the molecule are attractive for electrophiles to attack. But they do undergo electrophilic reactions more slowly than alkenes Alkenes react with bromine easily at room temperature. Benzene does not react with bromine without additional halogen carrier chemicals. In benzene, electrons in πbond(s) are delocalised around the ring of 6 carbon atoms. In alkenes, π electrons are localised between two carbons. Benzene therefore has a lower electron density than a = bond in alkenes. Benzene therefore polarises bromine less and induces a weaker dipole in bromine than an alkene would. The electrophilic substitution mechanisms involve a temporary breaking of the delocalization to form an intermediate. It takes energy to form this intermediate. The activation energies are therefore high, and substitution reactions of arenes tend to be relatively slow. alogenation of Benzene hange in functional group: arene halogenoarene Reagents: Bromine or chlorine onditions: iron(iii) bromide catalyst FeBr 3 Mechanism: Electrophillic Substitution verall Equation for reaction Br 2 Br Br A catalyst called a halogen carrier is needed to produce a strongly electrophilic halogen. Various substances can be used as halogen carriers. ommon ones are aluminium chloride All 3 or iron (III) chloride Fel 3 for chlorination or arenes. Aluminium bromide AlBr 3 or iron (III) bromide FeBr 3 can be used for bromination. It is possible to create the iron(iii) bromide in situ by reacting iron with bromine or the analogous reaction or chlorine and iron to produce iron (III) chloride. The halogen carrier causes the ll or BrBr bond to break heterolytically to produce a positive chlorine or bromine ion Mechanism Example equations for formation of electrophiles: All 3 l 2 All 4 l FeBr 3 Br 2 FeBr 4 Br l l l All 4 All 3 l The benzene π cloud attracts the l electrophile. The l ion bonds to the benzene ring to produce an intermediate. In the intermediate the positive charge is shared between the five other carbon atoms. The bond breaks and the pair of electrons returns to the delocalised orbitals on the benzene ring. The delocalised ring of electrons reforms. The ion that leaves the benzene reacts with the All 4 to reform All 3 catalyst and l. N Goalby chemrevise.org 4

alogenation and conditions If the arene has an alkyl side chain then using different conditions can cause different halogenation reactions to occur. The use of a halogen carrier catalyst such as aluminium chloride will cause the arene ring to halogenate. If UV light is used then the side group will halogenate by a free radical substitution reaction. 3 l 3 2 l l 2 All 3 catalyst l 2 UV light Use the All 3 catalyst to substitute directly on the benzene ring Use UV light to substitute on to the side group Nitration of Benzene Nitration of benzene and other arenes is an important step in synthesising useful compounds e.g. explosive manufacture (like TNT, trinitrotoluene/ 2,4,6trinitromethylbenzene) and formation of amines from which dyestuffs are manufactured. (The reaction for this is covered in the amines section.) hange in functional group: benzene nitrobenzene Reagents: concentrated nitric acid in the presence of concentrated sulfuric acid (catalyst) Mechanism: Electrophilic Substitution Electrophile: verall Equation for reaction N 2 The electrophile called the nitronium ion, is produced by a mixture of concentrated nitric acid and concentrated sulfuric acid. This is called the nitrating mixture. verall equation for the formation of the electrophile: N 3 2 2 S 4 2S 4 3 Mechanism N 2 S 3 : The benzene π cloud attracts the electrophile. The ion bonds to the benzene ring to produce an intermediate. Both of the electrons in the N bond to the electrophile come from the benzene ring. This leaves a positive charge in the intermediate species In the intermediate the positive charge is shared between the five other carbon atoms. The bond breaks and the pair of electrons returns to the delocalised orbitals on the benzene ring. The delocalised ring of electrons reforms. S 4 2 S 4 The ion rejoins with the S 4 to reform 2 S 4 catalyst. N Goalby chemrevise.org 5

The nitration of benzene should be done at 60 o to produce nitrobenzene. If a higher temperature of around 100 o is used a second nitro group can be substituted onto a different position on the ring. It produces 1,3 dinitrobenzene If the benzene ring already has a electron releasing side group e.g. methyl then the Nitro group can also join on different positions. Nitration of substituted arenes can occur more readily and can occur at lower temperatures. Methylbenzene can undergo multiple substitution to produce 2,4,6trinitromethylbenzene. This used to be called 2,4,6 trinitrotoluene (TNT) which was used as an explosive 2 N 3 2,4,6trinitromethylbenzene Detailed method for nitration procedure Measure 2.5 cm 3 of methyl benzoate into a small conical flask and then dissolve it in 5 cm 3 of concentrated sulfuric acid. When the liquid has dissolved, cool the mixture in ice. Prepare the nitrating mixture by adding drop by drop 2 cm 3 of concentrated sulfuric acid to 2 cm 3 of concentrated nitric acid. ool this mixture in ice as well. Now add the nitrating mixture drop by drop from a dropping pipette to the solution of methyl benzoate. Stir the mixture with a thermometer and keep the temperature below 10. When the addition is complete, allow the mixture to stand at room temperature for another 15 minutes. After this time, pour the reaction mixture on to about 25 g of crushed ice and stir until all the ice has melted and crystalline methyl 3nitrobenzoate has formed. Then use recrystallisation purification method oncentrated acids are corrosivewear gloves The acids react together to make the ion This reaction is exothermic so acids are kept cool and acid is added dropwise The temperature is kept low at this stage to prevent multiple substitution of nitro groups on the benzene ring N Goalby chemrevise.org 6

Sulfonation of Benzene hange of functional group: benzene sulfonated benzene Reagents: Fuming concentrated sulfuric acid onditions: heat under reflux for several hours Mechanism: Electrophillic Substitution Electrophile : S 3 (fuming sulphuric acid is S 3 dissolved in concentrated sulphuric acid) The sulfur trioxide can act as an electrophile because it can accept a pair of electrons The three oxygen atoms on the sulfur give it a large δ charge S 3 S 3 sulfur trioxide Sulfonated arenes are used in drugs, detergents and dyestuffs Benzenesulfonic acid Friedal rafts reactions These reactions add extra carbons to a benzene ring. There are two reactions. Friedal rafts alkylation adds an alkyl group of various lengths to the benzene ring. Friedal rafts acylation adds a ketone group to the benzene ring. Both reactions need an aluminium chloride catalyst to produce the electrophile. Friedel rafts Alkylation hange in functional group: benzene alkylbenzene Reagents: chloroalkane in the presence of anhydrous aluminium chloride catalyst onditions: heat under reflux Mechanism: Electrophilic Substitution Any chloroalkane can be used Rl where R is any alkyl group Eg 3, 2 5. The electrophile is the R. Formation of the electrophile. All 3 3 2 l 3 2 All 4 verall Equation for reaction 3 2 All 4 ethylbenzene 2 3 All 3 l Mechanism 2 3 2 3 2 3 The ion reacts with the All 4 to reform All 3 catalyst and l. All 4 All 3 l N Goalby chemrevise.org 7

Friedel rafts Acylation hange in functional group: benzene phenyl ketone Reagents: acyl chloride in the presence of anhydrous aluminium chloride catalyst onditions: heat under reflux (50 ) Mechanism: Electrophilic Substitution Any acyl chloride can be used Rl where R is any alkyl group e.g. 3, 2 5. The electrophile is the R. Equation for Formation of the electrophile. All 3 3 l 3 All 4 verall Equation for reaction 3 All 4 3 phenylethanone All 3 l These are important reactions in organic synthesis because they introduce a reactive functional group on to the benzene ring Mechanism 3 3 3 The ion reacts with the All 4 to reform All 3 catalyst and l. All 4 All 3 l xidation of side chains Reaction: alkylbenzene benzoic acid Reagents: alkaline KMn 4 (followed by 2 S 4 ) onditions: heat under reflux Type of reaction: oxidation 3 KMn 4 Different lengths of alkyl groups all get oxidised to benzoic acid 3 2 KMn 4 ydrogenation of Benzene Reaction: benzene cyclohexane Reagents: ydrogen onditions: Nickel catalyst at 200 and 30 atm Type of reaction: Addition and reduction 3 2 Ni atalyst N Goalby chemrevise.org 8

Effect of side groups on benzene ring Electron releasing side groups such as alkyl groups, phenols and amines releases electrons into the delocalised system making a higher electron density in the ring and it more attractive to electrophiles. They will therefore carry out the substitution reactions more readily with milder conditions Effect of delocalisation on side groups with lone pairs If a group, a l atom or an N 2 group is directly attached to a benzene ring the delocalisation in the benzene ring will extend to include the lone pairs on the N, and l. This changes the properties and reactions of the side group phenol Delocalisation makes the bond stronger and the bond weaker. Phenol does not act like an alcohol it is more acidic and does not oxidise N 2 phenylamine Less basic than aliphatic amines as lone pair is delocalised and less available for accepting a proton Effect of delocalisation on side groups with lone pairs If a l atom is directly attached to a benzene ring the delocalisation in the benzene ring will extend to include the lone pairs on the l. This changes the properties and reactions of the side group. l chlorobenzene The l bond is made stronger. Typical halogenoalkane nucleophilic substitution and elimination reactions do not occur. Also the electron rich benzene ring will repel nucleophiles. l Aliphatic halogenoalkanes will undergo nucleophilic substitution reactions to produce alcohols Effect of side groups on position of substitution Side groups on a benzene ring can affect the position on the ring of substitution reactions. Electrondonating groups such as, N 2 l will force further substitutions to occur on the 2 and 4 positions of the ring with 4M N 3 N2 or 2 nitrophenol 4 nitrophenol Electronwithdrawing groups (such as N 2 ) will have a 3directing effect in electrophilic substitution of aromatic compounds N 2 All 3 catalyst l 2 l N Goalby chemrevise.org 9