The decaying magneticfield of magnetars

Similar documents
Magnetic Field Evolution in Neutron Star Crusts

Systematic study of magnetar outbursts

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004

H. Tong, W. Wang

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars

The Giant Flare of 2004 Dec 27 from SGR and Fundamental Physics from Magnetars

Nanda Rea. XMM-Newton reveals magnetars magnetospheric densities. University of Amsterdam Astronomical Institute Anton Pannekoek NWO Veni Fellow

Evolution with decaying and re-emerging magnetic field

Probing the physics of magnetars

Anomalous X-ray Pulsars

SUPERFLUID MAGNETARS AND QPO SPECTRUM

Too much pasta for pulsars to spin down.

INTEGRAL & Magnetars: a high energy approach to extreme neutron stars

arxiv: v2 [astro-ph.he] 18 Mar 2013

Magnetars, the most extreme Neutron Stars. Multiwavelenght emission

EXTREME NEUTRON STARS

Neutron Stars: Observations

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774

Thermal Radiation from Isolated Neutron Stars

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Victoria Kaspi (McGill University, Montreal, Canada)

X-ray Observations of Rotation Powered Pulsars

Emission Model(s) of Magnetars

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS

Bursts and flares from magnetic Pulsars

X-ray Isolated Neutron Stars: The Challenge of Simplicity

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

Isolated And Accreting Magnetars Viewed In Hard X-rays

PERIOD CLUSTERING OF THE ANOMALOUS X-RAY PULSARS AND MAGNETIC FIELD DECAYINMAGNETARS

Next Paper(s) Period and Magnetic Field

arxiv: v1 [astro-ph.sr] 18 Jul 2013

Modelling magnetars high energy emission through Resonant Cyclotron Scattering

SGRs Long term variability

arxiv: v1 [astro-ph.he] 21 Oct 2010

arxiv: v1 [astro-ph] 1 Apr 2008

Hard X-ray emission from magnetars

Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy

Magnetic fields of neutron stars: the AMXP connection

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars

MAGNETARS AS COOLING NEUTRON STARS

arxiv: v1 [astro-ph.he] 10 Jul 2015

Spin and Orbital Evolution of the Accreting Millisecond Pulsar SAX J :

To understand the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

Term Project: Magnetic Fields of Pulsars

The Magnificent Seven Similarities and Differences

X-ray Spectra from Magnetar Candidates

Crustal cooling in accretion heated neutron stars

Surface emission of neutron stars

Broadband Emission of Magnetar Wind Nebulae

arxiv: v1 [astro-ph] 9 Dec 2007

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

The Neutron Star Zoo. Stephen C.-Y. Ng ( 吳志勇 ) HKU

The relevance of ambipolar diffusion for neutron star evolution

Young Neutron Stars and the Role of Magnetic Fields in their Evolution

Magnetic fields of neutron stars

Wide-Band Spectral Studies of Magnetar Burst and Persistent Emissions

arxiv:astro-ph/ v2 30 Dec 2001

Probing Extreme Physics with Compact Objects

NEW EVIDENCE OF PROTON-CYCLOTRON RESONANCE IN A MAGNETAR STRENGTH FIELD FROM SGR Alaa I. Ibrahim, 1,2 Jean H. Swank, 1 and William Parke 2

Magneto-Thermal Evolution of Isolated Neutron Stars

Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models

Cooling of magnetars with internal layer heating

Topology of magnetars external field I. Axially symmetric fields

QUARK NOVA INTERPRETATION OF THE 13 KEV EMISSION FEATURE SEEN IN THREE AXPS: 1E , XTE J AND 4U

A Major SGR-like Outburst and Rotation Glitch in the No-Longer-So-Anomalous X-ray Pulsar 1E

Progress in Pulsar detection

arxiv:astro-ph/ v1 24 Nov 1998

arxiv:astro-ph/ v1 10 Sep 1998

arxiv: v1 [astro-ph] 9 Dec 2007

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs)

Cooling Limits for the

UvA-DARE (Digital Academic Repository)

Magnetic dipole moment of soft gamma-ray repeaters and anomalous X-ray pulsars described as massive and magnetic white dwarfs

Thermal States of Transiently Accreting Neutron Stars in Quiescence

Synchrotron Radiation II

Extreme optical outbursts from a magnetar-like transient source: SWIFT J

The pulsar population and PSR/FRB searches with MeerKAT Slow boring pulsars

Thermal Emission from Isolated Neutron Stars

Electron-MHD Turbulence in Neutron Stars

Measuring the Specific Heat and the Neutrino Emissivity of Dense Matter

Cooling Neutron Stars. What we actually see.

A resonant cyclotron scattering model for the X-ray spectra of Magnetar Candidates

ASCA Observation of the Quiescent X-ray Counterpart to SGR

10 Years of Accreting Pulsars with Fermi GBM

arxiv: v1 [astro-ph] 4 Jul 2007

Powering Anomalous X-ray Pulsars by Neutron Star Cooling

Hard X-ray Emission by Resonant Compton Upscattering in Magnetars

James Clark For The LSC

Nature of fault planes in solid neutron star matter

Observations of. Pulsar Wind Nebulae

A FIRST LOOK WITH Chandra AT SGR AFTER THE GIANT FLARE: SIGNIFICANT SPECTRAL SOFTENING AND RAPID FLUX DECAY

Extreme Astrophysics with Neutron Stars

Thomas Tauris Bonn Uni. / MPIfR

What Can Neutron Stars Tell Us about QED and Vice Versa?

arxiv: v1 [astro-ph.he] 17 Nov 2011

GRBM Science Case for Lobster-ISS

Lecture 3 Pulsars and pulsar wind nebulae

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries

Nucleon Superfluidity vs Thermal States of INSs & SXTs in quiescence

Transcription:

November 25th 2013 SFB/TR7 Video Seminar The decaying magneticfield of magnetars SIMONE DALL'OSSO Theoretical Astrophysics - University of Tübingen

Motivations - X-ray emission of magnetars powered by decay of superstrong magnetic field a) eventually test this hypothesis b) best objects to study B-decay - Magnetar-like emission from unsuspected magnetars (SGR 0418+5729 Rea et al. 2010) Additional degree of freedom besides dipole field? - Link between different classes of high-b NSs (SGRs, AXPs, transient AXPs/SGRs, XDINs,...) Dall'Osso, Granot & Piran (2012), MNRAS 422, 2878

Recent population studies Galactic scale height Olausen & Kaspi 2013

Recent population studies Galactic scale height Olausen & Kaspi 2013

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 Characteristic (spindown) age ω τ c= 2 ω 19 1/2 B d 3.2 10 ( P P ) G

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 Log P B=const Log P

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 Log P B=const Log P

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 Log P B=const τ=const Log P

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 Log P B=const τ=const Log P

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 SGR 0418 io d Ra th a e d r sl a pu lin e

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 SGR 0418 io d Ra th a e d r sl a pu lin e

Source classes AXPs/SGRs: Kuiper et al. (2006), INTEGRAL Figure credits: Mereghetti 2008 persistent X-ray emission >> d/dt(erot) Thermal kt=(0.5-0.7) kev hard-x spectral tails (up to 150 kev) Bursts&Flares (ms min) - No radio

Source classes AXPs/SGRs: persistent X-ray emission >> d/dt(erot) Thermal kt=(0.5-0.7) kev hard-x spectral tails (up to 150 kev) Bursts&Flares (ms min) - No radio Figures: Woods (2003) Israel et al. (2008)

Source classes AXPs/SGRs: persistent X-ray emission >> d/dt(erot) Thermal kt=(0.5-0.7) kev hard-x spectral tails (up to 150 kev) Bursts&Flares (ms min) - No radio Transients: Quiescence : X-ray Lum. d/dt(erot) Thermal kt =(0.4-0.5) kev + A << ANS Outburst : X-ray Lum. >> d/dt(erot) decays on ~ yrs timescale

Source classes AXPs/SGRs: persistent X-ray emission >> d/dt(erot) Thermal kt=(0.5-0.7) kev hard-x spectral tails (up to 150 kev) Bursts&Flares (ms min) - No radio Transients: Quiescence : X-ray Lum. d/dt(erot) Thermal kt =(0.4-0.5) kev + A << ANS Outburst: X-ray Lum. >> d/dt(erot) decays on ~ yrs timescale Figure: Bernardini et al. (2009)

Source classes AXPs/SGRs: persistent X-ray emission >> d/dt(erot) Thermal kt=(0.5-0.7) kev hard-x spectral tails (up to 150 kev) Bursts&Flares (ms min) - No radio Transients: Quiescence : X-ray Lum. d/dt(erot) Thermal kt =(0.4-0.5) kev + A << ANS Outburst: X-ray Lum. >> d/dt(erot) decays on ~ yrs timescale Figure: Rea et al. 2012

Source classes AXPs/SGRs: persistent X-ray emission >> d/dt(erot) Thermal kt=(0.5-0.7) kev hard-x spectral tails (up to 150 kev) Bursts&Flares (ms min) - No radio Transients: Quiescence : X-ray Lum. d/dt(erot) Thermal kt =(0.4-0.5) kev + A << ANS Outburst: X-ray Lum. >> d/dt(erot) decays on ~ yrs timescale X-ray Dim Isolated NSs: prototypical isolated NSs. Nearly perfect thermal spectra Stable X-rays kt = (0.04-0.1) kev

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 SGR 0418 io d Ra th a e d r sl a pu lin e

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 Bd ~ Bd/τd τd ~ B - α SGR 0418 io d Ra th a e d r sl a pu lin e

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 α<2 Produces asymtptotic spin (cf. Colpi et al. 2000) SGR 0418 io d Ra th a e d r sl a pu lin e

Pulsars: back to basics Magnetic dipole spindown 2 d ω = K B ω 3 α<2 Produces asymtptotic spin (cf. Colpi et al. 2000) SGR 0418 io d Ra th a e d r sl a pu lin e

B Radio Pulsars D ea th Li ne τ

B 1013G Radio Pulsars D ea th Li ne τ

B BMAX P 1013G ma x Radio Pulsars D ea th P~ Li ne 5s τ

A physical perspective r lsa Pu s e lin 11 h at de P= (Dall'Osso, Granot & Piran 2012)

A physical perspective r lsa Pu No high-b with old spindown age s e lin 11 h at de P= No source here (Dall'Osso, Granot & Piran 2012) A limit period exists P ~ 11 s

A physical perspective r lsa Pu No high-b with old spindown age s e lin 11 h at de P= No source here A limit period exists P ~ 11 s Bd ~ Bd/τd τd ~ B -α (Dall'Osso, Granot & Piran 2012)

Dipole Field Decay: parametric model τd ~ B-1 τc tage

Dipole Field Decay: parametric model

Main modes of dipole field decay Goldreich & Reisenegger 1992

Main modes of dipole field decay Goldreich & Reisenegger 1992

Main modes of dipole field decay Goldreich & Reisenegger 1992

Main modes of dipole field decay OHMIC DECAY AMBIPOLAR DIFFUSION HALL DRIFT Goldreich & Reisenegger 1992

Main modes of dipole field decay Hall decay of crustal field is the fastest @B > 1012-13 G τd,h ~ 104 yrs (ρ14/b15 ) (Cumming et al. 2004, Goldreich & Reisenegger 1992)

Main modes of dipole field decay Hall decay of crustal field is the fastest @B > 1012-13 G τd,h ~ 104 yrs (ρ14/b15 ) (Cumming et al. 2004, Goldreich & Reisenegger 1992)

Main modes of dipole field decay Hall decay of crustal field is the fastest @B > 1012-13 G τd,h ~ 104 yrs (ρ14/b15 ) (Cumming et al. 2004, Goldreich & Reisenegger 1992) B-independent ohmic decay in the crust exponential +ohmic diffusion to deep layers power-law in time: τd,i ~ 104 yrs ρi,12 α (1.5 1.8) (Urpin, Changmugam & Sang 1994 [ ] Urpin & Yakovlev 2008) Ambipolar diffusion in the core can be relevant if B >> 1015 G τd,amb ~ 104 yrs ρ15/b161.25 (Goldreich & Reisenegger 1992, Thompson & Duncan 1996, Dall'Osso et al. 2009, But: Glampedakis et al. 2011 for effects of superfluidity)

Dipole decay modes vs. observations

Dipole decay modes vs. observations

Dipole decay modes vs. observations

Dipole decay modes vs. observations

Dipole decay modes vs. observations

Age costraints on α Upper limit to quiescent luminosity of SGR 0418+5729 LX ~ 5 1031 erg/s (Rea et al. 2010) implies lower limit to age based on passive cooling τage~ 105 yrs τd ~ 103 yrs/b15α 1 α < 2

Age costraints on α Kaplan & van Kerkwijk 2011

Age costraints on α Kaplan & van Kerkwijk 2011

Age costraints on α 3 10 τ d α yrs B15 Kaplan & van Kerkwijk 2011 with 1.5 α 1.8

Luminosity evolution vs. dipole decay

Luminosity evolution vs. dipole decay Decay of the Dipole Field does not match LX evolution 5 It cannot power PERSISTENT sources @τ ~ 105 yrs c Additional energy source required Internal magnetic field?

Decay of the internal B-field Ambipolar diffusion in the fluid core Heating balanced by ν-cooling(urca) equilibrium T

Decay of the internal B-field Ambipolar diffusion in the fluid core Heating balanced by ν-cooling(urca) equilibrium T Hall decay in the deep crust Maximum surface emission limited by ν's

Decay of the internal B-field Ambipolar diffusion in the fluid core Heating balanced by ν-cooling(urca) equilibrium T Hall decay in the deep crust Maximum surface emission limited by ν's Persistent : Bint 1016 G (same conclusion in Turolla et al. (2011)) Transients: underluminous in quiescence (??) internal source for outbursts (Pons et al. 2009, Pons & Perna 2012) XDINs : no hint for internal field, but for 1 outlier (possible link)

Recent population studies More on LX vs. B Olausen & Kaspi 2013

Recent population studies More on LX vs. B Olausen & Kaspi 2013

Future directions Transients: statistics have just started to improve thanks to new gamma-ray detectors more observational work required Persistent vs. transient sources: what is the cause of the dichotomy?