Synthesis of 1,2-glycerol carbonate from carbon dioxide: the role of methanol in fluid phase equilibrium

Similar documents
Supplementary Material

Synthesis of 1,2-glycerol carbonate from carbon dioxide: The role of methanol in fluid phase equilibrium

Supporting Information

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Supporting Information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Supporting Information for the Article Entitled

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

ELECTRONIC SUPPLEMENTARY INFORMATION

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Synthesis and Reactivity of a Hydrido CNC Pincer Cobalt(III) Complex and Its

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Aluminum Complexes with Bidentate Amido Ligands: Synthesis, Structure and Performance on Ligand-Initiated Ring-Opening Polymerization of rac-lactide

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Electronic Supplementary Information

Supporting Information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Electronic Supporting Information. for. Group 13 Complexes of Dipyridylmethane, a Forgotten Ligand in Coordination Chemistry

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Supporting Information

Selective Reduction of a Pd Pincer PCP Complex to Well- Defined Pd(0) Species

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of

Supporting Information

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

Supporting Information. Corporation, 1-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu , Japan

Cyclams with ambidentate methylthiazolyl pendants for a stable, inert and selective Cu(II) coordination

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes.

,

Synthesis of Vinyl Germylenes

Electronic Supplementary Information

Supplementary Information. Two Cyclotriveratrylene Metal-Organic Frameworks as Effective Catalysts

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Supporting Information for: Catalytic N 2 Reduction to Silylamines and Thermodynamics of N 2 Binding at Square Planar Fe

A versatile electronic hole in one-electron oxidized Ni II bissalicylidene

Supporting Information

Supplementary Material. Synthesis of novel C-2 substituted imidazoline derivatives having the norbornene/dibenzobarrelene skeletons

Supporting Information

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Supporting Information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Supporting Information

Supporting Information

Supporting Information

The oxide-route for the preparation of

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides

Supporting Information

Manganese-Calcium Clusters Supported by Calixarenes

Supporting Information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Synthesis, characterization and crystal structure of a new supramolecular system containing triorganotin(iv) and 1,3,5- Benzenetricarboxylic acid

Supplemental Information

[MnBrL(CO) 4 ] (L = Amidinatogermylene): Reductive Dimerization, Carbonyl Substitution, and Hydrolysis Reactions

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within Supramolecular Cage

Supporting Information

Supporting Information

Supporting Information

Supporting Information

One-dimensional organization of free radicals via halogen bonding. Supporting information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

A Compactly Fused π Conjugated Tetrathiafulvalene Perylenediimide Donor Acceptor Dyad

Stereoselective Synthesis of (-) Acanthoic Acid

Supporting Information

A Facile Route to Rare Heterobimetallic Aluminum-Copper. and Aluminum-Zinc Selenide Clusters

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

Synthesis of two copper clusters and their catalysis towards the oxidation of benzene

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Supporting Information

Supporting information for the manuscript. Synthesis and Structure of Nitride-Bridged Uranium(III) Complexes

Supporting Information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Chiral Sila[1]ferrocenophanes

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

Redox Noninnocence of the Bridge in Copper(II) Salophen and bis-oxamato Complexes

Supporting Information

Supplementary information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supplementary Figures

Electronic Supplementary Information

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer.

Supporting Information

A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile. organic solvents and quantitative monitor for acetonitrile vapour

Supporting Information for

Charged bis-cyclometalated Iridium(III) Complexes with Carbene-Based Ancillary Ligands

Chapter Five. Synthesis and Structural. studies of dibutyltin. compounds

Supplementary Figure 1. Mass spectrum (top) and 1 H NMR spectrum (bottom, in CDCl 3 ) of [ppy 2 IrNH] + PF 6 -.

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

A water-soluble pillar[6]arene: synthesis, host guest. chemistry, controllable self-assembly, and application in. controlled release

Supporting Information

Rhenium(I)-Based Monocyclic- and Bicyclic Phosphine Oxide Coordinated. Supramolecular Complexes

SUPPLEMENTARY INFORMATION

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis

Transcription:

Electronic Supplementary Data Synthesis of 1,2-glycerol carbonate from carbon dioxide: the role of methanol in fluid phase equilibrium S Podila, L Plasseraud, H Cattey & D Ballivet-Tkatchenko* Université de Bourgogne, CNRS, UMR 6302, Institut de Chimie Moléculaire, 9, avenue Alain Savary, 21000 Dijon, France Email: ballivet@u-bourgogne.fr and G V S M Carrera & M Nunes da Ponte REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Email: mnponte@fct.unl.pt and S Neuberg & A Behr Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge Str. 66, 44227 Dortmund, Germany Email: Arno.Behr@bci.tu-dortmund.de No. Contents Pg No. 1 Table S1 Crystallographic data for (1a), (1b), and (2) 2 2 Table S2 Phase equilibrium compositions (in mole fraction) and pressures, 3 at 423 K, for CO 2 + (0.9912 methanol + 0.0088 glycerol) 3 Fig. S1 ORTEP view of the dimeric structure of tert-bu 2 Sn(1,2-glycerolate), (1b). 4 Hydrogen atoms excepted OH and CHCl 3 have been omitted for clarity. 4 X-ray structure of tert-bu 2 Sn(1,2-propanediolate) (2) 4 5 Fig. S2 ORTEP view of the dimeric structure of tert-bu 2 Sn(1,2-propanediolate), (2). 5 Hydrogen atoms have been omitted for clarity. 6 Synthesis and characterisation of (n-bu 3 Sn) 3 (1,2,3-glycerate) 5 7 Fig. S3 119 Sn{ 1 H} NMR spectrum in toluene-d 8 at 298 K. 6 8 Fig. S4 13 C{ 1 H} NMR spectrum of the butyl groups (CDCl 3, 298 K). 6 9 Fig. S5 13 C{ 1 H} NMR spectrum of the glycerate group (CDCl 3, 298 K). 7 10 Fig. S6 IR spectra of (n-bu 3 Sn) 3 (1,2,3-glycerate): (a) neat and (b) with CO 2. 7 1

Table S1 Crystallographic data for (1a), (1b), and (2) Compound 1a 1b 2 Empirical formula C 22 H 48 O 6 Sn 2 C 22 H 48 O 6 Sn 2.4CHCl 3 C 22 H 48 O 4 Sn 2 Formula weight (g mol -1 ) 645.98 1123.46 613.98 Temperature (K) 115(2) 115(2) 115(2) Crystal system Monoclinic Triclinic Monoclinic Space group P2 1 /c P 1 P2 1 /n a (Å) 9.1001(4) 9.161(5) 8.7087(3) b (Å) 14.5728(6) 10.607(7) 17.6564(5) c (Å) 10.6193(4) 13.067(7) 9.7578(3) α ( ) 107.162(3) β ( ) 105.802(2) 109.138(3) 115.067(1) γ ( ) 94.867(3) Volume (Å 3 ) 1355.05(10) 1122.7(9) 1359.08(7) Z 2 1 2 ρ calc. (g/cm 3 ) 1.583 1.662 1.500 µ (mm -1 ) 1.874 1.860 1.859 F(000) 7696 560 624 Crystal size (mm 3 ) 0.30x0.13x0.05 0.45x0.30x0.08 0.25x0.23x0.10 sin(θ)/λ max (Å -1 ) 0.65 0.65 0.65 Index ranges h: -11; 11 h: -11; 11 h: -11; 8 k: -18; 18 k: -13; 13 k: -22; 22 l: -13; 13 l: -16; 17 l: -11; 12 Reflections collected 15210 11326 9378 R int 0.0402 0.0537 0.0235 Reflections with I 2σ(I) 3011 4750 2979 Data/restraints/ parameters 3099 / 0 / 143 4863 / 0 / 216 3046 / 0 / 182 Final R indices [I 2σ(I)] R1 a = 0.0248 R1 a = 0.0480 R1 a = 0.0164 wr2 b = 0.0575 wr2 b = 0.1214 wr2 b = 0.0420 R indices (all data) R1 a = 0.0259 R1 a = 0.0490 R1 a = 0.0172 wr2 b = 0.0580 wr2 b = 0.1223 wr2 b = 0.0423 Goodness-of-fit c on F 2 1.145 1.104 1.208 Largest difference peak and hole (e Ǻ 3 ) 1.582 and -0.662 1.785 and -1.746 0.303 and -0.421 CCDC deposition no. 889174 889176 889175 a R1=Σ( F o - F c )/Σ F o ; b wr2=[σw(f 2 o -F 2 c ) 2 /Σ[w(F 2 o ) 2 ] 1/2 where w=1/[σ 2 (Fo 2 +(0.0151P) 2 +2.5229P] for 1, w=1/[σ 2 (Fo 2 +(0.0491P) 2 +5.4008P] for 1b, w=1/[σ 2 (Fo 2 +0.8036P] for 2 where P=(Max(Fo 2.0)+2*Fc 2 )/3; c S =[Σw(F 2 o -F 2 c ) 2 /(n-p)] 1/2 (n = number of reflections. p = number of parameters). 2

Table S2 Phase equilibrium compositions (in mole fraction) and pressures, at 423 K, for CO 2 + (0.9912 methanol + 0.0088 glycerol), (b, d and c stand for bubble, dew and critical point, respectively) p/mpa x CO2 x methanol x glycerol 10.59 0.224 0.7692 0.0068 b 13.20 0.288 0.7058 0.0062 b 14.28 0.347 0.6473 0.0057 b 14.65 0.3585 0.6359 0.0056 b 15.13 0.374 0.6205 0.0055 b 15.53 0.3925 0.6022 0.0053 b 15.93 0.408 0.5868 0.0052 b 16.20 0.425 0.5700 0.0050 b 16.31 0.431 0.5640 0.0050 b 16.48 0.441 0.5541 0.0049 b 16.64 0.457 0.5382 0.0048 b 16.80 0.47 0.5254 0.0046 b 16.90 0.528 0.4679 0.0041 b 16.95 0.539 0.4570 0.0040 b 16.97 0.554 0.4421 0.0039 b 17.04 0.570 0.4262 0.0038 b 17.12 0.593 0.4034 0.0036 c 17.37 0.650 0.3469 0.0031 d 17.45 0.663 0.3340 0.0030 d 17.485 0.678 0.3192 0.0028 d 17.49 0.69 0.3073 0.0027 d 16.53 0.7235 0.2741 0.0024 d 16.49 0.739 0.2587 0.0023 d 16.47 0.752 0.2458 0.0022 d 16.44 0.765 0.2329 0.0021 d 16.42 0.82 0.1784 0.0016 d 16.5 0.874 0.1249 0.0011 d 14.35 0.883 0.1160 0.0010 d 13.36 0.896 0.1031 0.0009 d 3

Fig. S1 ORTEP view of the dimeric structure of tert-bu 2 Sn(1,2-glycerolate), (1b). Hydrogen atoms excepted OH and CHCl 3 have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Sn-O1 2.076(3), Sn-O2 2.092(3), Sn-C4 2.172(4), Sn-C8 2.176(4), Sn-O1 i 2.251(3), O1-C1 1.446(5), O2-C2 1.420(5), C1-C2 1.518(6), C2-C3 1.524(6), C3-O3 1.426(6), O3-H3 0.8400, C4-C7 1.517(6), C4-C6 1.530(7), C4-C5 1.535(6), C8-C11 1.524(7), C8-C9 1.529(6), C8-C10 1.529(7), C12-Cl1 1.741(6), C12-Cl3 1.758(5), C12-Cl2 1.760(6), C12-H12 1.0000, C13-Cl4 1.729(7), C13-Cl6 1.748(6), C13-Cl5 1.771(7); O1-Sn-O2 79.13(12), O1-Sn-C4 114.99(15), O2-Sn-C4 98.28(15), O1-Sn-C8 119.64(15), O2- Sn-C8 96.32(15), C4-Sn-C8 125.14(17), O1-Sn-O1 i 68.22(13), O2-Sn-O1 i 147.30(11), C4-Sn-O1 i 96.98(14), C8- Sn-O1 i 98.24(14), C1-O1-Sn 113.0(2), C1-O1-Sn i 134.6(2), Sn-O1-Sn i 111.78(13), C2-O2-Sn 111.9(2), O1-C1-C2 108.3(4), O2-C2-C1 107.9(3), O2-C2-C3 112.3(4), C1-C2-C3 111.5(4), O3-C3-C2 115.2(4), C7-C4-C6 111.4(4), C7-C4-C5 110.5(4), C6-C4-C5 108.6(4), C7-C4-Sn 111.7(3), C6-C4-Sn 107.4(3), C5-C4-Sn 107.0(3), C11-C8-C9 109.9(4), C11-C8-C10 109.7(4), C9-C8-C10 109.3(4), C11-C8-Sn 113.8(3), C9-C8-Sn 105.9(3), C10-C8-Sn 108.0(3), Cl1-C12-Cl3 110.4(3), Cl1-C12-Cl2 110.5(3), Cl3-C12-Cl2 109.9(3), Cl1-C12-H12 108.6, Cl3-C12-H12 108.6, Cl2-C12-H12 108.6, Cl4-C13-Cl6 115.5(4), Cl4-C13-Cl5 109.0(3), Cl6-C13-Cl5 108.1(4), Cl4-C13-H13 108.0, Cl6-C13-H13 108.0, Cl5-C13-H13 108.0. Symmetry transformations used to generate equivalent atoms ( i ): 1-x, -y, 1-z. X-ray structure of tert-bu 2 Sn(1,2-propanediolate) (2) The X-ray crystallographic structure of (2) can be described as a dimeric structure based on a centrosymmetric inorganic Sn 2 O 2 four-membered ring (Fig. S2). Each tin atom is bound to two tertbutyl groups and chelated by bidentate 1,2-propanediolate ligand (L 2- ), forming a five-membered ring, characteristic of dioxastannolane compounds. One of the oxygen atoms of L 2- (O1) is coordinated to both tin atoms, with two different distances, leading to the dimeric structure. The tin atoms are pentacoordinated in a distorted trigonal bipyramid geometry. The equatorial plan includes the tert-butyl groups [C4-Sn1-C8 123.91(6), C4-Sn1 2.1768(17) and C8-Sn1 2.1798(16) Å] and oxygen atom O1 of L 2- [O1-Sn1-C4 114.95(6), O1-Sn1-C8 120.70(6) and O1-Sn1 2.0862(11) Å]. Axial positions are occupied by O2 of L 2-, and O1 i from the second 1,2-propanediolate chelating ligand [O2-Sn1-O1 i 148.06(4), O2-Sn1 2.0450(11) and Sn1-O1 i 2.2551(11) Å]. 4

Fig. S2 ORTEP view of the dimeric structure of tert-bu 2 Sn(1,2-propanediolate), (2). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C1-O2 1.426(3), C1-C2 1.524(7), C1-C3 1.531(19), C2-O1 1.440(7), C4-C5 1.500(4), C4-C7 1.512(4), C4-C6 1.573(3), C4-Sn1 2.1768(17), C8-C9 1.525(2), C8-C11 1.527(2), C8-C10 1.535(3), C8-Sn1 2.1798(16), O1-Sn1 2.0862(11), O1-Sn1 i 2.2551(11), O2-Sn1 2.0450(11), Sn1-O1 i 2.2551(11); O2-C1-C2 108.3(3), O2-C1-C3 108.9(8), C2-C1-C3 110.9(8), O1-C2-C1 108.0(4), C5-C4-Sn1 110.30(16), C7- C4-Sn1 108.08(18), C6-C4-Sn(1) 108.69(15), C9-C8-Sn1 112.90(11), C11-C8-Sn1 108.79(11), C10-C8-Sn1 104.85(11), C2-O1-Sn1 112.4(3), C2-O1-Sn1 i 134.7(3), Sn1-O1-Sn1 i 111.93(4), C1-O2-Sn1 111.39(12), O2-Sn1- O1 80.09(4), O2-Sn1-C4 99.63(6), O1-Sn1-C4 114.95(6), O2-Sn1-C(8) 96.10(6), O1-Sn1-C8 120.70(6), C4-Sn1- C8 123.91(6), O2-Sn1-O1 i 148.06(4), O1-Sn1-O1 i 68.07(4), C4-Sn1-O1 i 96.10(6), C8-Sn1-O1 i 97.89(5). Symmetry transformations used to generate equivalent atoms ( i ): 1-x, -y, 1-z. Synthesis and characterisation of (n-bu 3 Sn) 3 (1,2,3-glycerate) Glycerol (0.290 g, 3.149 mmol) was added to a solution of n-bu 3 SnOCH 3 (3.036 g, 9.456 mmol) in 10 ml toluene in a Schlenk tube equipped with a reflux condenser. The mixture was heated at 358 K for 6 h, then cooled down to room temperature, and volatiles eliminated by trap to trap distillation. The residue is a colorless viscous oil. Anal. (%): Calcd for C 39 H 86 O 3 Sn 3 : C, 48.83; H, 9.03. Found: C, 48.16; H 9.77. The 119 Sn{ 1 H} and 13 C{ 1 H} NMR spectra are shown in Figs S3-S5. The reactivity with CO 2 was determined by IR spectroscopy (Fig. S6), and volumetry at room temperature and atmospheric pressure according to a published procedure (Ballivet-Tkatchenko D, Douteau O & Stutzmann S, Organometallics, 19 (2000) 4563). 5

99.5 Bu 3 SnO 72.8 * * * 110 100 90 80 70 60 ppm * impurities; integrated area ratio = 1.8 for 99.5 and 72.8 resonances Fig. S3 119 Sn{ 1 H} NMR spectrum in toluene-d 8 at 298 K. C # C $ Sn-CH 2 -CH 2 -CH 2 -CH 3! " # $% C! Bu 3 SnO C " C # C $ C " C! 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 ppm Fig. S4 13 C{ 1 H} NMR spectrum of the butyl groups (CDCl 3, 298 K). 6

solvent Bu 3 SnO 69.9 78.5 79 78 77 76 75 74 73 72 71 70 69 68 ppm DEPT-135 79 78 77 76 75 74 73 72 71 70 69 68 ppm Fig. S5 13 C{ 1 H} NMR spectrum of the glycerate group (CDCl 3, 298 K). (a) (b) Transmittance a.u. 1594 cm -1 4000,,, 89,, 8,,, )9,, ),,, 49,, 4,,, 9, 500 ;<=>?@AB>C!DAE4 Fig. S6 IR spectra of (n-bu 3 Sn) 3 (1,2,3-glycerate): (a) neat and (b) with CO 2.!"#$"%&%'()%& 7