Giacomo Ghiringhelli. Dipartimento di Fisica - Politecnico di Milano CNR - SPIN 26 September, 2017

Similar documents
Resonant Inelastic X-ray Scattering on elementary excitations

X-ray vision of High Temperature Superconductivity Giacomo Ghiringhelli

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

High Tc cuprates: Recent insights from X-ray scattering

Neutron scattering from quantum materials

New insights into high-temperature superconductivity

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Probing e-ph Coupling via RIXS

Quantum dynamics in many body systems

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3. superlattices

Advanced Spectroscopies of Modern Quantum Materials

MAGNETIC, ORBITAL AND CHARGE FLUCTUATIONS IN LAYERED CUPRATES STUDIED BY RESONANT SOFT X-RAY SCATTERING

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Unusual magnetic excitations in a cuprate high-t c superconductor

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

arxiv: v1 [cond-mat.str-el] 17 Aug 2016

Anisotropic Magnetic Structures in Iron-Based Superconductors

Re-entrant charge order in overdoped (Bi,Pb) 2.12 Sr 1.88 CuO 6+δ outside the pseudogap regime

Angle-Resolved Two-Photon Photoemission of Mott Insulator

A New look at the Pseudogap Phase in the Cuprates.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Energy Spectroscopy. Ex.: Fe/MgO

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Optical design and performance of the ESRF soft X-ray beamline. Kurt Kummer*, Nick Brookes ESRF

Electronic Noise Due to Thermal Stripe Switching

High-temperature charge density wave correlations in La Ba CuO 4 without spin-charge locking

Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+

XRD endstation: condensed matter systems

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Magnetism in correlated-electron materials

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

Neutron and x-ray spectroscopy

Self-doping processes between planes and chains in the metalto-superconductor

Can superconductivity emerge out of a non Fermi liquid.

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

High-T c superconductors

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic ferromagnet interface through standing-wave excitation

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Cuprate high-t c superconductivity: Insights from a model system 北京大学量子材料科学中心

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Search for conducting stripes in lightly hole doped YBCO

Superconducting Stripes

What's so unusual about high temperature superconductors? UBC 2005

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart

Q=0 Magnetic order in the pseudogap state of cuprates superconductors

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Surfing q-space of a high temperature superconductor

single-layer transition metal dichalcogenides MC2

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

The Chemical Control of Superconductivity in Bi 2 Sr 2 (Ca 1 x Y x )Cu 2 O 8+±

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Quantum phase transitions in Mott insulators and d-wave superconductors

The High T c Superconductors: BCS or Not BCS?

SUPPLEMENTARY INFORMATION

Electronic quasiparticles and competing orders in the cuprate superconductors

μsr Studies on Magnetism and Superconductivity

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

Photo-enhanced antinodal conductivity in the pseudogap state of high T c cuprates

Electronic structure calculations results from LDA+U method

More a progress report than a talk

The microscopic structure of charge density waves in under-doped YBa 2 Cu 3 O 6.54

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES

Neutron Scattering in Transition Metal Oxides

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Inelastic soft x-ray scattering, fluorescence and elastic radiation

PART 1 Introduction to Theory of Solids

Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

SUPPLEMENTARY INFORMATION

V.N. Strocov and T. Schmitt

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

Magnetic Order versus superconductivity in the Iron-based

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution.

Spin dynamics in high-tc superconductors

Evidence for two distinct energy scales in the Raman spectra of. Abstract

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Neutron and x-ray spectroscopy

The NMR Probe of High-T c Materials

Energy Spectroscopy. Excitation by means of a probe

SESSION 2. (September 26, 2000) B. Lake Spin-gap and magnetic coherence in a high-temperature superconductor

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

1 of 5 14/10/ :21

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Superconductivity-insensitive order at q~1/4 in electron doped cuprates

Inhomogeneous spin and charge densities in d-wave superconductors

Tuning order in cuprate superconductors

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y

X-ray absorption spectroscopy.

Transcription:

Giacomo Ghiringhelli Dipartimento di Fisica - Politecnico di Milano CNR - SPIN giacomo.ghiringhelli@polimi.it 26 September, 2017

Introducing myself... Keywords: Soft x-rays Resonant spectroscopy RIXS 3d transition metal oxides Cuprates SC

Summary RIXS: resonant inelastic x-ray scattering A second order process dd excitations Magnetic excitations REXS: the elastic part of RIXS spectra

Synchrotrons: so beautiful! Apple new HQ in Cupertino British intelligence agency GCHQ (Government Communications Headquarters )

Transition metal oxides 5 matwww.technion.ac.il

One probe for several degrees of freedom 1. Energy loss spectroscopy 2. Momentum resolution 3. Coupling to a. Charge b. Spin c. Orbital d. Lattice 4. Bulk sensitivity 5. Good energy resolution 6. Decent count rate charge electrons (1, 2, 3, 5, 6) neutrons (1, 2, 3b, 3d, 4, 5) lattice photons (1, 2, 3a,3c, 3d, 4, 5, 6) orbital

Introduction to Resonant X-ray Scattering X-ray Absorption Spectroscopy XAS RXS ELS Energy Loss Spectroscopy XRD X-Ray Diffraction

From XRD to X-ray Scattering X-Ray Diffraction X-Ray Scattering q crystal 2q k' = k l = l' k' = k l = l' q=g Real space Bragg law Reciprocal lattice Laue condition: q=g l l' (0,2) k k' (0,1) (1,1) q = k' - k (0,0) (1,0)

ELS: from Raman to Inelastic X-ray Scattering Energy Loss Spectroscopy Raman light scattering w k k' w' Inelastic X-ray Scattering k 0, q 0, W=w-w' X-ray photons w w' W=w-w' q = k' - k w w' W W

Resonant X-ray Absorption Photoelectric effect dominates x-ray absorption below 100,000 ev Absorption coefficient (arb. u.) 1 0.1 0.01 1E-3 O K 530 ev Cu L 2,3 930-950 ev CuO Cu K 9000 ev 2.5 2.0 1.5 1.0 0.5 1E-4 0.0 10 100 1000 10000 Photon Energy (ev) Edges are univocally element specific And often are dressed with a strong resonance

Core level binding energies and edges C O Si Sc Fe Zn Y Mo Cd Ce Gd Lu Au Th 3dTM 4dTM RE Actinides 100000 Binding energy (ev) 10000 1000 100 Hard X-Rays Soft X-Rays UV 10 1s 2p 3/2 3p 3/2 3d 5/2 4p 3/2 4d 5/2 0 10 20 30 40 50 60 70 80 90 100 Atomic number Z GG - Politecnico di Milano; Source: X-ray data booklet, Lawrence Berkeley National Laboratory 25/03/02 18:29:59

XAS of 3d transition metals E 3dTM Spin-Orbit splitting E v E F 4sp 3d Mn L 2,3 XAS hn in 3p w La 0.7 Sr 0.3 MnO 3 2p 1s MnO 640 645 650 655 660 photon energy (ev)

Resonant Inelastic X-ray Scattering Resonant X-ray Absorption RIXS Inelastic X-ray Scattering w, l k k' w', l' X-Ray Scattering W=w-w' q = k' - k

The choice of the resonance: 2p 3d, L 3 edge 3d Transition Metal oxides: a lucky coincidence for soft x-rays 3d TM 4sp 3d E 2p Oxygen M 2,3 edges (28-77 ev) 3p 2s L 2,3 edges (400-950 ev) 2p K edge 530 ev 1s Soft x rays K edge (4.5-9.0 kev) 1s Hard x rays Strong resonances

L 3 RIXS Spin Phonons E dd E F 3d e-h hn out - hn in E loss 0 hn in (930 ev) hn out E h n in h n out 2p 3/2 core-hole: high energy low energy Ground state Intermediate states Final states

Kramers-Heisenberg formula 16

L edge RIXS : energy and momentum transfer S a m p le E, k, Resonant Inelastic X-ray Scattering: an energy loss experiment made with photons of high energy at a core absorption resonance Scattering plane E, k, Energy h w = E - E k Conservation laws: Energy Momentum Angular momentum q = k-k Momentum k

Photon momentum and kinematics Photons vs Neutrons: energy and momentum Wavevector of particles used in inelastic scattering 10 Thermal neutrons k (Ang -1 ) 1 0.1 Neutrons 1st Brillouin zone boundary K edges 0.01 L edges 1E-3 Photons M edges 1m 10m 100m 1 10 100 1k 10k 100k energy (ev)

L 2,3 edge RIXS: intermediate and final states 3d hn in hn out E 2p 3/2 Excit ation De- excitation s e out hn out hn in Ground state Intermediate stat es Final stat es Time Resonant scattering without relaxation of intermediate s 3d n 2p 5 3d n+1 3d n

The potential of soft RIXS (for 3dTM systems) Site selective, q resolved probe of elementary excitations charge excitations across the gap dd excitations magnetic excitations phonons 3d n 2p 5 3d n+1 3d n : elastic, magnetic and phonons 3d n *: dd excitations 3d n L: Charge Transfer excitations

Cuprates: the easy case In cuprates Cu is divalent: Cu 2+ 3d 9 CuO This makes XAS almost trivial: 1 peak only 3d 9 (2p 3/2 ) 3 3d 10 928 930 932 934 Photon Energy (ev) RIXS can be calculated even by hand: 3d 9 (2p 3/2 ) 3 3d 10 (3d 9 )* Even for magnetic excitations (spin waves), because fast collision approximation is a very good approximation

dd excitations in Cu 2+ systems z d states Spherical O 3 x 2 -y 2, z 2 10Dq xy, yz,zx Cubic O h e g t 2g x 2 -y 2 z 2 10Dq xy yz,zx Tetragonal D 4h b 1 a 1 b 2 e g Interatomic exchange x x z z x y y z x x y y z y x 2 -y 2 z 2 10Dq xy yz,zx b 1 a 1 b 2 e g 3d 9 2p 5 3d 10 3d 9

Cu L 3 RIXS of cuprates: mainly dd excitations 3d 9 2p 5 3d 10 3d 9 : elastic, magnetic and phonons 3d 9 *: dd excitations 3d 10 L: Charge Transfer excitations 00 00 00 00 00 Sr 2 CuO 2 Cl 2 All final states are reached via 2 electric dipole allowed transitions! Photons get coupled to electrons spin thanks to 2p spin-orbit interaction 00 0-8 -6-4 -2 0 At L 3 edge elastic peak is very small (not the case at K) Energy loss (ev)

Cu L 3 edge: CuO, La 2 CuO 4, Malachite 21 Cu 2+ in square approximately planar coordination Intensity (ph. s -1 ev -1 ) 14 7 0 CuO La 2 CuO 4 Cu 2 (OH) 2 CO 3-3.0-2.5-2.0-1.5-1.0-0.5 0.0 Energy loss (ev) Cu-O distances: CuO 1.7 2-2 Ang LCO 1.9 2.4 Ang Malachite 1.9 2.6 Ang x2 Different Cu 2+ coordination, symmetry, hybridization Different dd excitations G. Ghiringhelli, A. Piazzalunga, X. Wang, A. Bendounan, H. Berger, F. Bottegoni, N. Christensen, C. Dallera, M. Grioni, J.-C. Grivel, M. Moretti Sala, L. Patthey, J. Schlappa, T. Schmitt, V. Strocov, and L. Braicovich, Eur.Phys. J. Special topics 169, 199 (2009)

This is a very direct way of measuring the dd-excitation energies NdBCO M. Moretti Sala, V. Bisogni, L. Braicovich, C. Aruta, G. Balestrino, H. Berger, N. B. Brookes, G.M. De Luca, D. Di Castro, M. Grioni, M. Guarise, P. G. Medaglia, F. Miletto Granozio, M. Minola, M. Radovic, M. Salluzzo, T. Schmitt, K.-J. Zhou, G. Ghiringhelli, New J. Phys. 13, 043026 (2011)

Ni L 3 edge: NiO, NiCl 2 Ni 2+ (3d 8 ) in octahedral coordination Intensity (ph. s -1 ev -1 ) 40 20 NiO c b z y x a z 0 NiCl 2-4 -3-2 -1 0 a b x y Energy loss (ev)

dd and CT excitations in simple oxides G. Ghiringhelli, A. Piazzalunga, X. Wang, A. Bendounan, H. Berger, F. Bottegoni, N. Christensen, C. Dallera, M. Grioni, J.-C. Grivel, M. Moretti Sala, L. Patthey, J. Schlappa, T. Schmitt, V. Strocov, and L. Braicovich, Eur.Phys. J. Special topics 169, 199 (2009)

RIXS of NiO: incident photon energy depencence... 852 853 854 855 856 857 858 SAXES & Swiss Light Sourc e Politecnico di Milano Intensity (arb.u.) 852 853 854 855 856 857 858 5 NiO-5 RIXS 4 P S NiO Ni L 3 XAS -4 S P NiO P NiCl 2 x5 5 4 Energy loss (ev) 3 2 1-3 -2-1 3 2 1 Energy loss (ev) 0 0 0 852 853 854 855 856 857 858 Incident photon energy (ev) 0 25 50 75 100-1 RIXS Intensity (ph. s ev -1 ) G. Ghiringhelli A. Piazzalunga, C. Dallera, L. Braicovich, T. Schmitt, V.N. Strocov, J. Schlappa, L. Patthey, X. Wang, H. Berger, and M. Grioni, PRL 102, 027401 (2009)

Many excited states relative scattered photon energy (ev) Crystal field model: Sugano-Tanabe diagrams -4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.5 0.0 intensity (arb. u.) Ni L 3 RIXS F H (x 2 -y 2 ), (z 2 ) e g 10Dq t 2g (xy), (yz), (zx) 3 T 1g 1 G 3 P 1 D 1 T 1 3 1 T 2g A T 3 1g 1g T 1 2g E 3 1g A 2g 1g 3 F 1.5 1.0 0.5 0.0 1 E g 1.5 10Dq (ev) Single ion Octahedral C.F. 3d spin-orbit Exchange 1 T 2g 4.0 3.5 1 G 3 P 1 D 3.0 2.5 2.0 1.5 1.0 0.5 relative state energy (ev) 3 F 0.0 1.0 0.5 0.0 10Dq (ev) Single ion Octahedral C.F. G. Ghiringhelli et al, J. Phys. Cond. Mat. 17, 5397 (2005) S.G.Chiuzbaian, G. Ghiringhelli et al, Phys. Rev. Lett. 95, 197402 (2005)

Mn L 3 edge: MnO, LaMnO 3 15 Mn 2+ and Mn 3+ in octahedral coordination Intensity (ph. s -1 ev -1 ) 10 5 MnO Mn 2+ : 3d 5 0 LaMnO 3 x10-10 -5 0 Mn 3+ : 3d 4 Energy loss (ev)

An application to thin film: Mn 2+ in La x MnO 3 La x MnO 3-d /STO films x=la/mn ratio for x<1 becomes FM (self doping) RIXS shows that Mn 2+ is at site A, ie, it replaces La 3+ XAS reveals the presence of Mn 2+ for x<1 MnO x=0.66 x=0.88 x=0.98 x=1.07 P. Orgiani, A. Galdi, C. Aruta, V. Cataudella, G. De Filippis, C.A. Perroni, V. Marigliano Ramaglia, R. Ciancio, N.B. Brookes, M. Moretti Sala, G. Ghiringhelli, and L. Maritato, Giacomo Ghiringhelli Phys. 2017 Rev. B 82, 205122 (2010)

STO/LAO superlattice: RIXS at Ti L 3

Again LAO/STO RIXS arxiv:1705.10360v1 Raman and Non Raman excitations present only above 4 uc of LAO: 2 forms of Ti-3d 1 structure?

What about the quasi-elastic spectral features? Phonons: up to 90meV Magnons (2J at BZB): up to 300 mev (J eff 140 mev) Multi mangons... 00 00 Sr 2 CuO 2 Cl 2 00 00 00 00 0-8 -6-4 -2 0

High Tc superconductors

High Tc superconducting cuprates La 2-x Sr x CuO 4 (LSCO) YBa 2 Cu 3 O 6+d (YBCO)

Spin excitations in HTcS: undoped AF INS: La 2 CuO 4 2D AF DIRECT SPACE RECIPROCAL SPACE nuclear BZ (p, p) G (0,0) magnetic BZ (p,0) N. S. Headings, S. M. Hayden, R. Coldea, and T. G. Perring, Phys Rev Lett. 105 247001 (2011)

The mysteries of HT c S La 2-x Sr x CuO 4 (LSCO) YBa 2 Cu 3 O 6+d (YBCO) Eduardo Fradkin and Steven A. Kivelson, Nature Physics, 8, 864 (2012)

Some questions on cuprates What is the role of antiferromagnetism in superconductivity? Is AF the same in all cuprates? How does AF evolves with doping? What is the role of charge order in superconductivity? CDW-SC: competition or collaboration? CDW: static or fluctuating? What is the between CDW and electronic structure? Is the pseudogap needed for CDW?

La 2 CuO 4 : 2D spin ½ Heisenberg AF insulator Oxygen DIRECT SPACE Copper RECIPROCAL SPACE nuclear BZ (p, p) G (0,0) (p,0) Elementary magnetic excitations are spin waves magnetic BZ

First demonstration: La 2 CuO 4 La 2 CuO 4 s p q // >0 q // <0-3.5-3.0-2.5-2.0-1.5-1.0-0.5 0.0 0.5 Energy loss (ev) L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli PRL 104 077002 (2010)

La 2 CuO 4, RIXS vs INS La 2 CuO 4 R. Coldea et al, Phys. Rev. Lett. 86, 5377 (2001). L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli PRL 104 077002 (2010)

RIXS: Experimental conditions 10 0,0 Wavevector of particles used in inelastic scattering Thermal neutrons 0.5,0.5 p,p Cu L 3 RXS 0.5,0 p,0 Cu L 3 resonance: E 0 = 930 ev q max = 0.86 Ang -1 confined inside a region around G 2p core hole: spin-orbit interaction E resolution: 120-240 mev q resolution: 0.005 rlu ½ - 1 hour per spectrum k (Ang -1 ) 1 0.1 0.01 1E-3 Neutrons 1st Brillouin zone boundary Photons 3dTM M edges 3dTM L edges 3dTM K edges, 5dTM L edges 1m 10m 100m 1 10 100 1k 10k 100k E L 3 RIXS INS q energy (ev)

Magnetic excitations in AF cuprates 2008 Sr 2 CuO 2 Cl 2 DE 0.12 ev SAXES & Swiss Light Sourc e Politecnico di Milano M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J.N. Hancock, D. van der Marel, T. Schmitt, V.N. Strocov, L.J.P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H. M. Rønnow, and M. Grioni. Phys. Rev. Lett. 105, 157006 (2010)

ERIXS at ESRF: full maps of magnons The detailed maps of spin excitations reveal why different families of cuprates have different max T c NdBa 2 Cu 3 O 6.1 CaCuO 2 Y.Y. Peng, GG et al, Nature Physics 4248 (2017)

Spin-waves in NiO 47 Thanks to the goniometer and the scattering arm rotation we can do a real 3D scan 2016: RIXS (ESRF) 40 mev resolution 1972: INS M.T. Hutchings and E.J. Samuelsen, Phys. Rev. B 6, 3447 (1972). D. Betto, Y. Y. Peng, S. B. Porter, G. Berti, A. Calloni, G. Ghiringhelli, and N.B. Brookes, Phys Rev B 96 020409 (2017)

Magnons at Fe L 3 edge in BaFe 2 As 2 Ke-Jin Zhou, Yao-Bo Huang, Claude Monney, Xi Dai, Vladimir N. Strocov, Nan-Lin Wang, Zhi-Guo Chen, Chenglin Zhang, Pengcheng Dai, Luc Patthey, Jeroen van den Brink, Hong Ding & Thorsten Schmitt, Nature Comm. 4, 1470 (2013)

Magnetic and orbital excitations in Sr 2 IrO 4 Ir 4+ 5d 5 Strong spin-orbit in the 5d L 3 at 11.2 kev Jungho Kim, D. Casa, M. H. Upton, T. Gog, Young-June Kim, J. F. Mitchell, M. van Veenendaal, M. Daghofer, J. van den Brink, G. Khaliullin, and B. J. Kim, Phys. Rev. Lett. 108, 177003 (2012)

Theory of magnetic RIXS (1) Single ion cross section Linear spin wave theory

Theory of magnetic RIXS (2)

Theory of magnetic RIXS (3) What is the relation between RIXS and S(q,w)? S(q,w) vs p e-doping h-doping RIXS measures S(q,w) quite well Spin excitations harden with e- doping, and change very little with h-doping. C.J. Jia, E.A. Nowadnick, K. Wohlfeld, Y.F. Kung, C.-C. Chen, S. Johnston, T. Tohyama, B. Moritz & T.P. Devereaux, NATURE COMMUNICATIONS, 5:3314 (2014)

Spin excitations in HTcS: doped SC http://for538.wmi.badw.de/projects/p4_crystal_growth/index.htm 0.5,0.5 p,p 0,0 p,0 INS J.M. Tranquada, in Handbook of High-Temperature Superconductivity: Theory and Experiment, J.R. Schrieffer and J.S. Brooks, eds., Springer, 2007, V. Hinkov et al, Eur. Phys. J. Special Topics 188, 113 129 (2010)

What happens in doped, SC cuprates? Paramagnons Interestingly RIXS has demonstrated that short range AF correlation remains very strong even in doped, superconducting cuprates. L. Braicovich, J. van den Brink, M. Moretti Sala, GG et al PRL 104 077002 (2010) M. Le Tacon, GG, B. Keimer et al, Nat. Phys. 7, 725 (2011) This observation makes spin fluctuations the best candidate for Cooper pairing!

Paramagnons in Bi2201 UD15 Inelastic part Strongly damped collective spin excitations Or OP33 e-h Stoner like excitations? (1/2,1/2) (0,0) (1/2,0) YY. Peng, GG et al, unpublished

RIXS revealed Charge Order in HTcS NBCO Tc=65K V pol, T=15K -0.18 rlu -0.22 rlu -0.26 rlu -0.30 rlu -0.34 rlu -0.37 rlu -3-2 -1 0 Energy loss (ev) Max intensity at Tc: CO compete with SC G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D.C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer, L. Braicovich, Science 337, 821 (2012) RXS (at Cu L 3 and O K) in combination with STM, XRD and NMR has demonstrated that CO is ubiquitous in cuprates

UD Bi2201, Bi2212, Hg1201 and OPD Bi2212 Bi2201 and Bi2212 underdoped Bi2212 optimally doped R. Comin et al, Science 343, 390 (2014; Eduardo H. da Silva Neto et al, Science 343, 393 (2014) Hg1201 underdoped W. Tabis et al, Nat. Comm. 6875 (2014) M. Hashimoto, G. Ghiringhelli et al, PRB 89 220511 (2014)

CDW measured with ERIXS at ID32 Higher sensitivity reveals CDW in optimally doped Bi2201 Bi 2 (Sr,La) 2 CuO 6+d YY. Peng, GG et al, Phys. Rev. B 94,184511 (2016)

Overdoped (Bi,Pb) 2.12 Sr 1.88 CuO 6+δ Unexpected observation of a very intense and sharp peak in pseudo-tetragonal (1,0) direction OD11K (T c =11 K, p~0.215), Cu L 3 edge RIXS, measured at T=20K Symmetric w/r to G Pure charge character (no spin)

Revising the CDW landscape CDW2 - RXS CDW3 - RIXS 250 The fluctuating CDW scenario seems compatible with this discovery 200 T N T* T (K) 150 100 50 0 AF PG 0.05 0.10 0.15 0.20 0.25 p (holes/cu) T c SC CDW1 - STM Y. Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara, D. Betto, G. M. De Luca, K. Kummer, E. Lefrançois, M. Salluzzo, H. Suzuki, M. Le Tacon, X. J. Zhou, N. B. Brookes, B. Keimer, L. Braicovich,M. Grilli, G. Ghiringhelli, arxiv:1705.06165 (2017).

ENERGY RESOLUTION: progress in the last 20 years DE ~1.6 ev K. Ichikawa et al., J. Electron Spectrosc. Relat. Phenom.78, 183 (1996). La 2 CuO 4 Cu 2p 3d Photon energy ~ 931 ev DE ~1.2 ev L. C. Duda et al., J. Electron Spectrosc. Relat. Phenom. 110 111, 275 (2000). DE ~0.8 ev AXES @ ID08, 2003. G. Ghiringhelli et al., Phys Rev Lett. 92, 117406 (2004). DE ~0.45 ev AXES @ ID08, 2007. L. Braicovich et al., arxiv:0807:1140v1, (2008). DE ~0.13 ev SAXES @ SLS, 2008. G. Ghiringhelli, L. Braicovich, T. Schmit et al., unpublished DE ~0.050 ev DE ~0.030 ev -4-3 -2-1 0 1 2 Energy loss (ev) 2000 2003 2007 2008 2015 2016 Uppsala ESRF + AXES SLS + SAXES ESRF + ERIXS Combined resolving power has increased by a factor 30

Soft x-ray RIXS instrumentation High resolution mono, small x-ray spot on the sample Grating spectrometer: optimized efficiency, high resolution The main limiting factor is INTENSITY!!!!

AXES: 2.2 m ID12B and ID08 SAXES, SLS: 5 m ERIXS, ID32: 10 m

New ID32 at the ESRF ERIXS 1 Old experimental hall New experimental hall ID32

ERIXS at ID32 Resolving power: 40,000 at 1 kev 3 times better than previous record Collimating Mirror to increase horizontal acceptance Two CCD detectors Multi-layer mirror, to measure polarization of scattered photons Two Gratings, to optimize for resolution or efficiency

ERIXS, 27/04/2014

ERIXS and the other HR soft-rixs projects SR FACILITY E/DE (combined) Length YEAR NOTES ESRF, ERIXS@ID32 30,000 11 m 2015 With Polarimeter DIAMOND, IXS 40,000 14 m 2017 MAX IV, Veritas 40,000 12 m 2018 Rowland Geometry NSLS II, Centurion@SIX 70,000 15 m 2018 Hettrick-Underwood, 50 nrad slope error, 1 um spot on sample European XFEL 20,000 5 m 2019 For non linear RIXS and pumpprobe time-resolved RIXS

Bibliography Insights into the high temperature superconducting cuprates from resonant inelastic X-ray scattering M.P.M. Dean Journal of Magnetism and Magnetic Materials Volume 376, 15 February 2015, Pages 3 13